Analízis 3
- Interpolációs polinomok
- Differenciálegyenletek
- Differenciálegyenletek, izoklinák
- Laplace transzformáció
- Paraméteres görbék
- Vektormezők, görbementi és felületi integrálok
- Divergencia és rotáció
- Valszám alapok, Kombinatorika
- Teljes valószínűség tétele, Bayes tétel
- Eloszlás, eloszlásfüggvény, sűrűségfüggvény
- Geometriai valószínűség, Binomiális tétel
- Várható érték és szórás
- Markov és Csebisev egyenlőtlenségek
- Nevezetes diszkrét és folytonos eloszlások
- Kétváltozós eloszlások
- Becslések
- Hipotézisvizsgálat
Kétváltozós eloszlások
1. Egy dobozban 2 zöld, 2 kék és 1 piros labda van. Kiveszünk belőle 2 labdát, és legyen
X = a kihúzott kék labdák száma
Y = a kihúzott piros labdák száma
Készítsük el X és Y együttes eloszlásának táblázatát. Adjuk meg X és Y peremeloszlását.
Megnézem, hogyan kell megoldani
2. Egy dobozban 2 zöld, 2 kék és 1 piros labda van. Kiveszünk belőle 2 labdát, és legyen
X = a kihúzott kék labdák száma
Y = a kihúzott piros labdák száma
Adjuk meg az X és Y közötti korrelációt.
Megnézem, hogyan kell megoldani
3. Egy dobozban 2 zöld, 2 kék és 1 piros labda van. Kiveszünk belőle 2 labdát, és legyen
X = a kihúzott kék labdák száma
Y = a kihúzott piros labdák száma
Adjuk meg X és Y peremeloszlás függvényeit, valamint az együttes eloszlásfüggvényt.
Megnézem, hogyan kell megoldani
4. Itt egy együttes eloszlástáblázat a peremeloszlásokkal.
Y/X | X=0 | X=1 | X=2 | \(P_Y \) |
Y=0 | 0,1 | 0,4 | 0,1 | 0,6 |
Y=1 | 0,2 | 0,2 | 0 | 0,4 |
\( P_X \) | 0,3 | 0,6 | 0,1 | 1 |
a) \( P(X=1, Y=1) = \; ? \)
b) \( P(X>1, Y=0) = \; ? \)
c) \( P(X=2 | Y=0) = \; ? \)
d) \( P(X<2 | Y=0) = \; ? \)
e) \( P(Y=1 | X>0) = \; ? \)
f) \( E(X | Y=0) = \; ? \)
Megnézem, hogyan kell megoldani
5. Adott az alábbi együttes sűrűségfüggvény.
\( f(x,y)= \begin{cases} \frac{1}{2}, &\text{ha } 0<x<2 &\text{és}& 0<y<1 \\ 0, &\text{különben} \end{cases} \)
Adjuk meg a perem-sűrűségfüggvényeket, és az együttes eloszlásfüggvényt.
Megnézem, hogyan kell megoldani
6. Adott az alábbi együttes eloszlásfüggvény.
\( F(x,y)= \begin{cases} e^{-x-y}-e^{-x}-e^{-y}+1, &\text{ha } 0<x &\text{és}& 0<y \\ 0, &\text{különben} \end{cases} \)
Adjuk meg a perem-eloszlásfüggvényeket, perem-sűrűségfüggvényeket.
Megnézem, hogyan kell megoldani
7. Adott az alábbi együttes sűrűségfüggvény.
\( f(x,y)= \begin{cases} A \left( x^4+y^4 \right), &\text{ha } -1<x<1 &\text{és}& -1<y<1 \\ 0, &\text{különben} \end{cases} \)
\( A= \; ? \qquad F(x,y)= \; ? \)
Tanuld meg mik a kétváltozós valószínűségi eloszlások, Együttes eloszlás, Peremeloszlás, X peremeloszlása, Y peremeloszlása, Függetlenség, X várható értéke, Y várható értéke, Szorzat várható értéke, Szórás, Kovariancia, Korreláció, Egyenes irányú kapcsolat, Fordított irányú kapcsolat, Szoros kapcsolat, Gyenge kapcsolat. X peremeloszlásfüggvénye, Y peremeloszlásfüggvénye, X és Y együttes eloszlásfüggvénye. Kétváltozós feltételes valószínűségek, Feltételes várható érték, A feltételes várható értékek kiszámolása. Folytonos kétváltozós eloszlások, Az együttes sűrűségfüggvény, A perem-sűrűségfüggvények, Az együttes eloszlásfüggvény, A perem-eloszlásfüggvények, A perem-sűrűségfüggvények kiszámolása, Együttes sűrűségfüggvényből együttes eloszlásfüggvény. A perem-eloszlásfüggvények kiszámolása, Együttes eloszlásfüggvényből együttes sűrűségfüggvény.