Teljes valószínűség tétele, Bayes tétel

1.

a) Egy király úgy szeretné izgalmasabbá tenni az elítéltjeinek kivégzését, hogy három ládikába helyez 25 arany és 25 ezüst érmét. Ha a kivégzésre szánt célszemély aranyat húz, akkor a várakozással ellentétben mégsem végzik ki, de ha ezüstöt, akkor igen. A király a nagyobb izgalom kedvéért mindig máshogy osztja szét az érméket a ládákban. Egyik alkalommal így:

16 arany

4 ezüst

8 arany

12 ezüst

1 arany

9 ezüst

A kérdés, hogy mekkora esélye van az elítéltnek a megmenkülésre.

b) Egy zöldséges három helyről szerez be almákat. Az első helyről a készlet 20%-át szerzi be, ezek mind jók. A második helyről a 30%-át és itt 5% romlott, de nem baj mert ezt is el tudja adni néhány vak öregasszonynak. A harmadik helyről a maradék 50%-ot szerzi be, és itt 15% romlott. Kiválasztunk egy almát, amiről kiderül, hogy romlott. Mekkora valószínűséggel származik a hármas termelőtől?

Megnézem, hogyan kell megoldani


2. Egy biztosító kétféle autóbiztosítást forgalmaz, normált és sportautóra köthetőt. Normál biztosítást négyszer annyian kötnek, mint sportautóra köthetőt. A normál biztosítást kötők 2%-a balesetezik egy éven belül, míg a sportautósoknál 97% nem balesetezik.

a) Egy biztosítottat kiválasztva mekkora a valószínűsége, hogy balesetezik?

b) Ha belesetezik, mekkora a valószínűsége, hogy sportautóra kötött biztosítása volt?

Megnézem, hogyan kell megoldani


3. Egy betegség kimutatásához szűrővizsgálatot végeznek. A vizsgálat a betegséget az esetek 90%-ában képes kimutatni. Ugyanakkor megesik, hogy tévesen betegnek diagnosztizál olyanokat is, aki egészséges. Ez az esetek 3%-ban fordul elő. A betegség a lakosság 35%-át érinti. Egy lakosról a teszt elvégzése során kiderül, hogy egészséges. Mi a valószínűsége, hogy valóban az?

Megnézem, hogyan kell megoldani


4. Egy kereskedő 3 termelőtől szerez be almákat. A vásárolt mennyiség 45%-a az első termelőtől származik, ennek fele első osztályú. A második termelőtől az összes mennyiség 35%-át szerzi be, ennek 70%-a első osztályú, míg a harmadik termelő csak első osztályú árút szállított.

Kiválasztunk egy almát és az nem első osztályú. Mennyi a valószínűsége annak, hogy a második termelőtől származik?

Megnézem, hogyan kell megoldani


5. Egy biztosító három irodájában autóbiztosítással rendelkező ügyfelek száma 100, 150 és 250, közülük rendre 70%, 60% és 55% a következő évre megújítja biztosítását.

a) Egy ügyfelet véletlenszerűen kiválasztva mekkora valószínűséggel újítja meg a biztosítást?

b) Ha egy ügyfél megújítja a biztosítását mekkroa valószínűséggel tartozik az első irodához?

Megnézem, hogyan kell megoldani


6. Egy üzletbe három helyről szállítanak egy terméket, amelynek 2%-a selejtes. A második helyről kétszer annyi terméket szállítanak, mint az elsőtől. A selejtarány az első helyről származóknál 4%, a másodiknál 2%, míg a harmadiknál minden századik termék selejtes. Egy terméket véletlenszerűen kiválasztva, mi a valószínűsége, hogy azt a harmadik helyről szállították?

Megnézem, hogyan kell megoldani


7. Egy üzemben három műszakban állítanak elő egy terméket aminek a 2%-a selejtes. Az első műszak kétszer annyi terméket állít elő, mint a második. A selejtek aránya az első műszakban 2%, a másodiknál 4%, míg a harmadiknál 1%.

Egy terméket kiválasztva mekkora valószínűséggel készítette a harmadik műszak?

Megnézem, hogyan kell megoldani


8. A következő táblázat az autóvezetők életkor szerinti éves baleseti statisztikáit tartalmazza. Ha egy adott évben az autóvezető nem okozott balesetet mekkora a valószínűsége, hogy 50 évnél idősebb?

életkor baleset okozás valószínűsége %-os megoszlás az összes autóvezető közül
-30 0,06 20%
31-50 0,02 45%
51- 0,04 35%

Megnézem, hogyan kell megoldani


9. Egy üzemben három műszakban folyik a termelés. A reggeli műszak 4.00-tól 12.00-ig tart és itt 4% esély van a gépsor meghibásodására. A délutáni műszakban, ami 12.00-tól 18.00-ig tart 5% eséllyel történik meghibásodás, míg az esti műszakban, ami 18.00-tól éjfélig tart a meghibásodás esélye 7%. Mekkora a valószínűsége, hogy ha egy nap pontosan egy meghibásodás történik, akkor az a délelőtti műszakban van?

Megnézem, hogyan kell megoldani


10. Egy alkatrészt száz darabos tételekben szállítanak. Az egyes tételekben azonos arányban fordul elő három, kettő és egy hibás alkatrészt tartalmazó. Mennyi a valószínűsége annak, hogy egy tételből 2 alkatrészt véletlenszerűen kiválasztva mindkettő hibátlan lesz?

Megnézem, hogyan kell megoldani


11. Egy vizsgán a hallgatók 60%-a első éves, 30%-uk másodéves, a többiek felsőbb évesek. Annak a valószínűsége, hogy egy hallgató vizsgán elért eredménye legalább közepes, rendre 6/25, 9/20, és 3/5. Ha egy találomra kiválasztott hallgató eredménye közepesnél gyengébb, akkor mennyi a valószínűsége annak, hogy az illető első éves?

Megnézem, hogyan kell megoldani


12. Egy terméket 50 darabos csomagolásban szállítanak. Ismert, hogy a csomagok egynegyede egy hibásat, másik negyede két hibásat tartalmaz, míg a többiben nincs hibás. Egy találomra kiválasztott csomagból kiveszünk 2 terméket. Mennyi annak a valószínűsége, hogy mindkettő hibátlan?

Megnézem, hogyan kell megoldani


13. Egy bizonyos készüléket 10-10 darabos tételben szállítanak. A tételek fele csupa hibátlan készüléket tartalmaz, a többi között azonos eséllyel található 1 vagy 2 hibást tartalmazó tétel. Két készüléket kiválasztunk egy tételből és mindkettőt hibátlannak találjuk. Mennyi a valószínűsége annak, hogy olyan tételből választottunk, amelyben 2 hibás volt?

Megnézem, hogyan kell megoldani

A témakör tartalma

Bemutatjuk, mi az a teljes valószínűség tétele és a Bayes tétel. A Teljes valószínűség tétele azt mondja ki, hogy ha ismerjük egy A esemény feltételes valószínűségét egy teljes eseményrendszer valamennyi eseményére, akkor ebből az A esemény valószínűsége kiszámítható. Példák a Teljes valószínűség tételére, Bayes-tétel, Feltételes valószínűség, A feltéve B, Teljes eseményrendszer.



A teljes valószínűség tétele és a Bayes tétel

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT