12 témakör, 154 rövid és szuper érthető lecke

Ez a remek Matek 1 BGE kurzus 154 rövid és szuper-érthető tananyag, 25 pdf és 29 tesztfeladatsor segítségével 12 témakörön keresztül vezet végig az izgalmas Matek 1 BGE rögös útjain. Mindezt olyan könnyed stílusban, mintha csak a rántotta elkészítésének problémájáról lenne szó.

Tartalomjegyzék: 

A kurzus 12 szekcióból áll: Függvények és inverz függvények, Komplex számok, Sorozatok, Küszöbindex és monotonitás, Sorok, Függvények határértéke és folytonossága, Deriválás, Függvényvizsgálat, gazdasági feladatok, Differenciálhatóság vizsgálata és az érintő egyenlete, Határozatlan integrálás, Határozott integrálás, Kétváltozós függvények

 

FÜGGVÉNYEK ÁBRÁZOLÁSA ÉS FÜGGVÉNYTRANSZFORMÁCIÓK

EXPONENCIÁLIS ÉS LOGARITMUS FÜGGVÉNYEK

TRIGONOMETRIKUS FÜGGVÉNYEK ÉS AZ EGYSÉGKÖR

INVERZ FÜGGVÉNY

KOMPLEX SZÁMOK

SOROZATOK

 

SOROK

 

FÜGGVÉNYEK HATÁRÉRTÉKE

 

FOLYTONOSSÁG

  • Függvények folytonossága - Egy függvényt akkor nevezünk folytonosnak valamely pontban, ha itt a függvényérték és a határérték megegyezik. Lássuk miért is ennyire fontos ez.
  • Szakadás - Ha egy adott pontban a függvényérték és a határérték nem egyezik meg, akkor a függvénynek szakadása van az adott pontban. Ennek számos típusa lehet...
  • Megszüntethető szakadás - Ez olyankor van, ha a függvénynek létezik határértéke az adott pontban, de az nem egyezik meg a függvényértékkel.
  • Ugrás - Ez olyankor van, ha a függvénynek nem létezik határértéke az adott pontban, de van jobb és bal oldali véges határértéke.
  • Nem megszüntethető nem véges szakadás - Ez olyankor van, ha a függvénynek nem véges a határértéke az adott pontban.
  • Nem megszüntethető oszcilláló szakadás - Ez mindegyik közül a legszörnyűbb eset, ilyenkor a függvénynek jobb és bal oldali határértéke sincs.

 

DIFFERENCIÁLSZÁMÍTÁS

 

A TELJES FÜGGVÉNYVIZSGÁLAT

 

INTEGRÁLÁS, PRIMITÍV FÜGGVÉNY

  • Határozott és határozatlan integrálás - A határozott integrálással függvények görbéje alatti területeket tudunk kiszámolni, míg a határozatlan integrálással az úgynevezett primitív függvényt tudjuk meghatározni. A kétféle integrálás között a Newton-Leibniz formula létesít kapcsolatot.
  • Primitív függvény - Egy f(x) függvény primitív függvénye az a F(x) függvény, amelyet deriválva f(x)-et kapjuk.
  • Newton-Leibniz formula - A tétel, amely ezt a kapcsolatot leírja, az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.
  • Alapintegrálok - Tekintsük át a fontosabb függvények integráljait.
  • Integrálási szabályok - Lássuk, milyen integrálási szabályok vannak... 
  • Szorzatok integrálása - Lássuk, milyen módszerek vannak szorzatok integrálására. 
  • Törtek integrálása - Lássuk, milyen módszerek vannak törtek integrálására. 
  • Parciális integrálás - Ezzel a remek módszerrel szorzatokat tudunk integrálni úgy, hogy egy bonyolultabb integrálásból csinálunk egy egyszerűbb integrálást.
  • Összetett függvények integrálása - Összetett függvényeket általában akkor tudunk integrálni, ha azok meg vannak szorozva a belső függvényük deriváltjával. Van is erre egy remek kis képlet.
  • Helyettesítéses integrálás - Bizonyos esetekben érdemes bevezetni egy helyettesítést, amivel az integrálás egyszerűbbé válik. Nézzük meg, hogyan! 

HATÁROZOTT INTEGRÁLÁS

  • Határozott és határozatlan integrálás - A határozott integrálással függvények görbéje alatti területeket tudunk kiszámolni, míg a határozatlan integrálással az úgynevezett primitív függvényt tudjuk meghatározni. A kétféle integrálás között a Newton-Leibniz formula létesít kapcsolatot.
  • Primitív függvény - Egy f(x) függvény primitív függvénye az a F(x) függvény, amelyet deriválva f(x)-et kapjuk.
  • Newton-Leibniz formula - A tétel, amely ezt a kapcsolatot leírja, az egész matematika történetének egyik legfontosabb tétele. Egy Newton nevű angol fizikus és egy Leibniz nevű német filozófus egyszerre találta ki az 1600-as évek végén.
  • Két függvény közötti terület kiszámolása - Néhány tipikus feladat két függvény grafikonjai által közrezárt terület kiszámítására.
  • Improprius integrál - Végtelenbe nyúló tartományok területének kiszámolása.

KÉTVÁLTOZÓS FÜGGVÉNYEK

  • Mik azok a kétváltozós függvények? - Néhány elképesztően izgalmas példa kétváltozós függvényekre.
  • Lokális szélsőértékek - A kétváltozós függvények minimumai és maximumai olyanok, mint hegycsúcsok és völgyek.
  • Nyeregpont - Ez egy speciális pont a kétváltozós függvények felületén, amely bizonyos irányok szerint maximum, míg más irányok mentén minimum.
  • Parciális deriválás - A kétváltozós függvényeket x és y szerint is tudjuk deriválni. Ezeket a különböző változók szerinti deriváltakat parciális deriváltaknak nevezzük.
  • x szerinti derivált - A kétváltozós függvény azon parciális deriváltja, ahol x-et tekintjük változónak.
  • y szerinti derivált - A kétváltozós függvény azon parciális deriváltja, ahol y-t tekintjük változónak.
  • Másodrendű deriváltak - Az első deriváltak tovább deriválása újra parciális deriválással történik. Így négy darab másodrendű deriváltat kapunk. Két tiszta másodrendű deriváltat és két vegyes másodrendű deriváltat. 
  • Young tétel - A vegyes másodrendű deriváltak mindig egyenlők, ha a függvény kétszer folytonosan deriválható.
  • Stacionárius pont - Az elsőrendű parciális deriváltakat nullával egyenlővé téve egy egyenletrendszert kapunk. Ennek az egyenletrendszernek a megoldásai a stacionárius pontok.
  • Hesse mátrix - A másodrendű deriváltakból képzett mátrix, amely segít eldönteni, hogy a függvénynek a stacionárius pontokban minimuma, maximuma, vagy éppen gyeregpontja van-e.
Visszajelzés