- Valószínűségszámítás (15,3 pont)
- Térgeometria (12,5 pont)
- Kombinatorika (11,9 pont)
- Függvényvizsgálat, szélsőérték feladatok (11,2 pont)
- Számtani és mértani sorozatok (8,6 pont)
- Statisztika (7,3 pont)
- Az integrálás (7,1 pont)
- Szöveges feladatok (6,1 pont)
- Koordinátageometria (5,1 pont)
- Gráfok (4,8 pont)
- ***Vegyes emelt szintű feladatok***
- Exponenciális egyenletek és egyenlőtlenségek (4,7 pont)
- Exponenciális, logaritmusos és trigonometrikus egyenletrendszerek
- Síkgeometria (4,1 pont)
- Számelmélet (3,9 pont)
- Logaritmus, logaritmikus egyenletek (3,5 pont)
- Középpontos hasonlóság (3,1 pont)
- Trigonometrikus egyenletek és egyenlőtlenségek (3,1 pont)
- Szinusztétel és koszinusztétel (2,7 pont)
- A várható érték (2,6 pont)
- Függvények ábrázolása (2,5 pont)
- Deriválás (1,9 pont)
- Függvények érintője
- Trigonometria
- Sorozatok monotonitása és korlátossága
- Sorozatok határértéke
- Függvények határértéke és folytonossága
- Algebra, nevezetes azonosságok
- Abszolútértékes egyenletek és egyenlőtlenségek
- Bizonyítási módszerek, matematikai logika
- A teljes indukció
- Egybevágósági transzformációk
- Egyenletrendszerek
- Egyenlőtlenségek
- Összetett függvény, inverz függvény
- Valószínűségszámítás
- Elsőfokú függvények
- Feladatok függvényekkel
- Gyökös azonosságok és gyökös egyenletek
- Halmazok
- Másodfokú egyenletek
- Százalékszámítás és pénzügyi számítások
- Vektorok
Deriválás (1,9 pont)
Szerezd meg a hiányzó tudást
2020 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK
2020 MÁJUSI MATEK ÉRETTSÉGI FELADATOK
2019 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK
2019 MÁJUSI MATEK ÉRETTSÉGI FELADATOK
2018 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK
2018 MÁJUSI MATEK ÉRETTSÉGI FELADATOK
2017 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK
2017 MÁJUSI MATEK ÉRETTSÉGI FELADATOK
2016 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK
2016 MÁJUSI MATEK ÉRETTSÉGI FELADATOK
2015 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK
Deriválási szabályok
$f$ és $g$ deriválható függvények, és $c$ valós szám esetén a deriválási szabályok:
\( (cf)' = cf' \quad \left( \frac{f}{c} \right)' = \frac{f'}{c} \)
\( (f+g)' = f' + g' \)
\( (fg)' = f'g + fg' \)
\( \left( \frac{f}{g} \right)' = \frac{ f'g - fg'}{g^2} \)
\( \left( \frac{c}{f} \right)' = \frac{-cf'}{f^2} \)
\( \left( f \left( g(x) \right) \right)' = f' \left( g(x) \right) g'(x) \)
Differenciahányados
Egy szelő egyenes meredeksége a differenciahányados:
\( \frac{ f(x) - f(x_0) }{ x -x_0} \)
Differenciálhányados
Egy függvény érintő egyenesének meredeksége a differenciálhányados:
\( m= \lim_{x \to x_0}{ \frac{ f(x)-f(x_0)}{x-x_0}} \)
Ezt nevezzük a függvény $x_0$ pontban vett deriváltjának is.
Nevezetes függvények deriváltjai
\( (c)'=0 \quad \left( x^n \right)' = n x^{n-1} \quad \left( e^x \right)' = e^x \quad \left( a^x \right)' = a^x \ln{a} \)
\( ( \ln{x} )' = \frac{1}{x} \quad ( \log_a{x} )' = \frac{1}{x} \frac{1}{\ln{a}} \quad ( \sin{x} )' = \cos{x} \quad ( \cos{x} )' = - \sin{x} \)
\( ( \tan{x} )' = \frac{1}{\cos^2{x} } \quad ( \arcsin{x} )' = \frac{1}{\sqrt{1-x^2}} \quad ( \arccos{x} )' = \frac{-1}{\sqrt{1-x^2}} \quad (\arctan{x})' = \frac{1}{1+x^2} \)
Deriváljuk az alábbi függvényeket.
a) \( \left( 5\cdot x^3 \right)' = \; ? \)
b) \( \left( \frac{x^5}{7} \right)' = \; ? \)
c) \( \left( x^2+\ln{x} \right)' = \; ? \)
d) \( \left( x^3 \cdot \ln{x} \right)' = \; ? \)
e) \( \left( \frac{x^2}{\ln{x}} \right)' = \; ? \)
f) \( \left( \frac{5}{x^3+2} \right)' = \; ? \)
Deriváljuk az alábbi függvényeket.
a) \( \left( \sin{ \left( x^6+x^2 \right)} \right)' = \; ? \)
b) \( \left( \left( 3^x +\ln{x} \right)^4 \right)' = \; ? \)
c) \( \left( 5^{x^3+x} \right)' = \; ? \)
d) \( \left( \ln{\left( x^4+x^2 \right)} \right)' = \; ? \)
Deriváljuk az alábbi függvényeket.
a) \( f(x)=x^x \)
b) \( f(x)=(\cos{x})^{ \sin{x}} \)
Deriváljuk az alábbi függvényeket.
a) \( f(x)=x^{100}+x^7+7^x+\sqrt{42} \)
b) \( f(x)= \frac{ x^6-4x^4+7^x}{42} \)
c) \( f(x)= \sqrt[5]{x}+x^2 \cdot \sqrt[3]{x} \)
d) \( f(x)= \sqrt[3]{ x\cdot \sqrt[5]{x^3} } \)
Deriváljuk az alábbi függvényt.
\( f(x)=\sqrt[7]{x^3 \cdot \sqrt[4]{x}}\cdot \lg{x} \)
Deriváljuk az alábbi függvényt.
\( f(x)=\sqrt[4]{x^3 + \sqrt[7]{x}} \)
Deriváljuk az alábbi függvényt.
\( f(x)= \sqrt[4]{e^x} + \sqrt[3]{e^x} \)
Deriváljuk az alábbi függvényt.
\( f(x)= \ln{ \left( x^6-x^2+6 \right) } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{ \ln{x} -3^x}{ \sqrt[5]{x^4} + x^2 } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{ 3x }{ (4-x)^2 } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{ 3x }{ \sqrt{ e^x +1 } } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{ \lg{3x} + e^2 }{ \sqrt[3]{ 4-x } } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \frac{ e^{4x} - \sqrt[7]{x^4} }{ \ln{ (4-2x)} +7 } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \left( x^5-4^x \right) \left( \ln{x} - \sqrt[6]{x^7} \right) \)
Deriváljuk az alábbi függvényt.
\( f(x)= \ln{ \frac{ x^5 - 2^x }{ \sqrt[4]{x-6} +e^2} } \)
Deriváljuk az alábbi függvényt.
\( f(x)= \ln{ \sqrt[3]{ \frac{ x^4 - e^x}{5^{2x-4} -\ln{ \pi} }} } \)
Van itt egy függvény.
Ha néhány pontjában érintőt húzunk a függvényhez,
akkor az látszik, hogy ahol az érintő fölfelé megy, ott a függvény növekszik,
ahol az érintő lefelé megy, ott a függvény csökken.
Ott pedig, ahol az érintő vízszintesen megy, a függvénynek minimuma van,
de tulajdonképpen lehet maximuma is.
Mi az a deriválás, Deriváltak kiszámolása, Differencia hányados, Differenciál hányados, Alapderiváltak, Deriválási szabályok, Összeg deriváltja, Szorzat deriváltja, Hányados deriváltja, Összetett függvény deriváltja, A láncszabály, Deriválás feladatok megoldásokkal.
Az érintő tehát valahogy együtt mozog a függvénnyel, így ha ki tudjuk számolni a függvény érintőinek a meredekségét, akkor meg tudjuk mondani, hogy mit csinál
maga a függvény.
Számoljuk ki mondjuk ennek az érintőnek a meredekségét.
A meredekség azt jelenti, hogy ha egyet lépünk előre, akkor mennyit lépünk fölfelé.
A meredekség kiszámolásához segítségül hívunk egy másik pontot.
Először annak az egyenesnek számoljuk ki a meredekségét,
ami ezen a két ponton megy át.
Lássuk mekkora ennek az egyenesnek a meredeksége!
amennyit fölfele megy
amennyit előre megy
Ezt a meredekséget differencia hányadosnak nevezzük.
A szelő meredeksége a
differenciahányados:
Ez igazán remek, de eredetileg az érintő meredekségének kiszámolása volt a cél.
Nos úgy lesz ebből érintő, hogy -et elkezdjük közelíteni felé, és így a szelők egyre jobban közelítenek az érintőhöz.
Az érintő meredeksége tehát a szelők meredekségének a határértéke.
Ezt differenciál hányadosnak nevezzük, ez a derivált.
Az érintő meredeksége
a differenciál hányados:
az pontban a derivált
Egy függvény deriváltja tehát azt mondja meg, hogy milyen meredek érintő húzható a függvény grafikonjához.
Az függvény deriváltjának jelölésére az van forgalomban.
Lássuk melyik függvénynek mi a deriváltja!
A konstans függvények deriváltja nulla.
Például egy konstans függvény és
A hatványfüggvények deriváltja
például deriváltja
Ha úgy adódik, hogy ilyen gyökös izéket kell deriválni, azt ugyanígy kell:
és a derivált
Az egy biztos pont az életünkben, ugyanis deriváltja önmaga:
Az deriváltja kicsit rondább:
Itt van például ez, hogy
nos ennek a deriváltja nem mert itt x a kitevőben van.
és ez a bizonyos egy konkrét szám, nevezetesen e alapú logaritmus 5, de aggodalomra semmi ok, a számológéppel ki tudjuk számolni:
Ez igazán remek, de maradjunk inkább annál, hogy .
Aztán itt van az emlegetett deriváltja:
Az egyéb logaritmusok deriváltja pedig
például 10-es alapú logaritmus, így hát a=10 és a derivált:
Aztán itt jönnek a trigonometrikus függvények.
A szinusz deriváltja koszinusz, a koszinusz deriváltja mínusz szinusz.
A tangens deriváltja
na az már jóval barátságtalanabb, a többiről nem is beszélve.
Most pedig jöjjenek a deriválási szabályok!
És itt jön a legviccesebb, az összetett függvény deriválási szabálya.
Van itt egy függvény, ez még nem összetett.
Akkor válik összetett függvénnyé, ha x helyett mondjuk az van, hogy
Na ez már összetett függvény, és a szabály szerint úgy kell deriválni, hogy először deriváljuk a külső függvényt, ami az, hogy
aztán megszorozzuk a belső függvény deriváltjával.
Vagy itt van egy másik.
Ez nem összetett függvén, hanem egy ártatlan kis összeg.
De ha ez az egész a negyediken van,
na akkor már összetett függvény.
A külső függvény itt az, hogy
aminek a deriváltja, ahogyan lenni szokott
aztán itt is szorozni kell még a belső függvény deriváltjával.
És itt van például ez.
A külső függvény deriváltja
Most pedig elérkezett az idő, hogy szerencsét próbáljunk
a deriválás feladatokkal.
Van itt egy függvény.
Ha néhány pontjában érintőt húzunk a függvényhez,
akkor az látszik, hogy ahol az érintő fölfelé megy, ott a függvény növekszik,
ahol az érintő lefelé megy, ott a függvény csökken.
Ott pedig, ahol az érintő vízszintesen megy, a függvénynek minimuma van,
de tulajdonképpen lehet maximuma is.
Mi az a deriválás, Deriváltak kiszámolása, Differencia hányados, Differenciál hányados, Alapderiváltak, Deriválási szabályok, Összeg deriváltja, Szorzat deriváltja, Hányados deriváltja, Összetett függvény deriváltja, A láncszabály, Deriválás feladatok megoldásokkal.
Az érintő tehát valahogy együtt mozog a függvénnyel, így ha ki tudjuk számolni a függvény érintőinek a meredekségét, akkor meg tudjuk mondani, hogy mit csinál
maga a függvény.
Számoljuk ki mondjuk ennek az érintőnek a meredekségét.
A meredekség azt jelenti, hogy ha egyet lépünk előre, akkor mennyit lépünk fölfelé.
A meredekség kiszámolásához segítségül hívunk egy másik pontot.
Először annak az egyenesnek számoljuk ki a meredekségét,
ami ezen a két ponton megy át.
Lássuk mekkora ennek az egyenesnek a meredeksége!
amennyit fölfele megy
amennyit előre megy
Ezt a meredekséget differencia hányadosnak nevezzük.
A szelő meredeksége a
differenciahányados:
Ez igazán remek, de eredetileg az érintő meredekségének kiszámolása volt a cél.
Nos úgy lesz ebből érintő, hogy -et elkezdjük közelíteni felé, és így a szelők egyre jobban közelítenek az érintőhöz.
Az érintő meredeksége tehát a szelők meredekségének a határértéke.
Ezt differenciál hányadosnak nevezzük, ez a derivált.
Az érintő meredeksége
a differenciál hányados:
az pontban a derivált
Egy függvény deriváltja tehát azt mondja meg, hogy milyen meredek érintő húzható a függvény grafikonjához.
Az függvény deriváltjának jelölésére az van forgalomban.
Lássuk melyik függvénynek mi a deriváltja!
A konstans függvények deriváltja nulla.
Például egy konstans függvény és
A hatványfüggvények deriváltja
például deriváltja
Ha úgy adódik, hogy ilyen gyökös izéket kell deriválni, azt ugyanígy kell:
és a derivált
Az egy biztos pont az életünkben, ugyanis deriváltja önmaga:
Az deriváltja kicsit rondább:
Itt van például ez, hogy
nos ennek a deriváltja nem mert itt x a kitevőben van.
és ez a bizonyos egy konkrét szám, nevezetesen e alapú logaritmus 5, de aggodalomra semmi ok, a számológéppel ki tudjuk számolni:
Ez igazán remek, de maradjunk inkább annál, hogy .
Aztán itt van az emlegetett deriváltja:
Az egyéb logaritmusok deriváltja pedig
például 10-es alapú logaritmus, így hát a=10 és a derivált:
Aztán itt jönnek a trigonometrikus függvények.
A szinusz deriváltja koszinusz, a koszinusz deriváltja mínusz szinusz.
A tangens deriváltja
na az már jóval barátságtalanabb, a többiről nem is beszélve.
Most pedig jöjjenek a deriválási szabályok!
És itt jön a legviccesebb, az összetett függvény deriválási szabálya.
Van itt egy függvény, ez még nem összetett.
Akkor válik összetett függvénnyé, ha x helyett mondjuk az van, hogy
Na ez már összetett függvény, és a szabály szerint úgy kell deriválni, hogy először deriváljuk a külső függvényt, ami az, hogy
aztán megszorozzuk a belső függvény deriváltjával.
Vagy itt van egy másik.
Ez nem összetett függvén, hanem egy ártatlan kis összeg.
De ha ez az egész a negyediken van,
na akkor már összetett függvény.
A külső függvény itt az, hogy
aminek a deriváltja, ahogyan lenni szokott
aztán itt is szorozni kell még a belső függvény deriváltjával.
És itt van például ez.
A külső függvény deriváltja
Most pedig elérkezett az idő, hogy szerencsét próbáljunk
a deriválás feladatokkal.