Jump to navigation

Belépés
  • Elfelejtettem a jelszavam
Regisztráció
 
  • Hogyan működik a mateking?
  • Mire jó a matek?
  • Matek érettségi
  • Képletgyűjtemény
  • Feladatgyűjtemény
  • Rólunk
  • Matek 5. osztály próbaüzem
  • Matek 6. osztály próbaüzem
  • Matek 7. osztály próbaüzem
  • Matek 8. osztály próbaüzem
  • Matek 9. osztály
  • Matek 10. osztály
  • Matek 11. osztály
  • Matek 12. osztály
  • Középiskolai matek (teljes)
  • Középszintű matek érettségi
  • Emelt szintű matek érettségi
  • Egyetemi matek alapozó
Összes egyetemi tantárgy
Legnépszerűbb tantárgyak:
  • Analízis 1
  • Analízis 2
  • Analízis 3
  • Valószínűségszámítás
  • Lineáris algebra
  • Diszkrét matematika
  • Statisztika

mateking

Login
 

Középszintű matek érettségi

Kategóriák
  • Valószínűségszámítás (13,4 pont)
  • Számtani és mértani sorozatok (10,4 pont)
  • Statisztika (8,8 pont)
  • Térgeometria (8,7 pont)
  • Függvényekkel kapcsolatos feladatok (8,6 pont)
  • Koordinátageometria (6 pont)
  • Szöveges feladatok (5,5 pont)
  • Halmazok (5,3 pont)
  • Síkgeometria (5,3 pont)
  • Trigonometrikus geometria feladatok (4,9 pont)
  • Kombinatorika (4,5 pont)
  • Szinusztétel és koszinusztétel (4 pont)
  • Exponenciális függvények és egyenletek (3,2 pont)
  • Másodfokú egyenletek (3,1 pont)
  • Gráfok (2,7 pont)
  • Százalékszámítás és pénzügyi számítások (2,6 pont)
  • Elsőfokú függvények (1,7 pont)
  • Számelmélet (1,5 pont)
  • Egyenlőtlenségek (1,5 pont)
  • Vektorok (0,8 pont)
  • Algebra, nevezetes azonosságok
  • Egyenletrendszerek
  • Bizonyítási módszerek, matematikai logika
  • Abszolútértékes egyenletek és egyenlőtlenségek
  • Gyökös azonosságok és gyökös egyenletek
  • Logaritmus, logaritmikus egyenletek
  • Trigonometrikus egyenletek és egyenlőtlenségek
  • Egybevágósági transzformációk
  • A várható érték

Koordinátageometria (6 pont)

  • Epizódok
  • Feladatok
  • Érettségik
  • Képletek
01
 
Vektorok összeadása, hossza, skaláris szorzata, és 90°-os forgatása
02
 
Az egyenes egyenlete, egyenesek metszéspontja
03
 
Pont és egyenes távolsága
04
 
A kör egyenlete
05
 
FELADAT | kör egyenlete
06
 
FELADAT | egyenesek egyenletei és metszéspontjai
07
 
Hogyan kell kiszámolni egy háromszögben a súlypont, magasságpont és az O pont koordinátáit
08
 
Egy háromszögben a magasságvonalak hossza
09
 
FELADAT | háromszög súlyvonalai és súlypontja
10
 
FELADAT | háromszög területe
11
 
FELADAT | háromszög magasságpontja
12
 
FELADAT | háromszög nevezetes pontjai
13
 
FELADAT | háromszög magasságvonala és oldalai
14
 
Az egyenes iránytangenses egyenlete
15
 
FELADAT | kör egyenlete
16
 
FELADAT | Kör egyenlete három pontja alapján
17
 
FELADAT | Rombusz csúcsai vektorokkal
18
 
FELADAT | Koordinátatengelyeket érintő kör
19
 
FELADAT | Kör egyenlete
20
 
FELADAT | Kör és a kört érintő egyenes
21
 
FELADAT | Még egy kör és a kört érintő egyenes
22
 
FELADAT | kör egyenlete
23
 
FELADAT | kör egyenlete
24
 
FELADAT | egyenes egyenlete
25
 
FELADAT | Kör egyenlete
26
 
FELADAT | Kör egyenlete
27
 
FELADAT | kör egyenlete

Válaszd ki, hogy melyik év középszintű érettségi feladataival szeretnél gyakorolni.

2020 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 


 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2020 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 


 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2019 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 


 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2019 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2018 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2018 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2017 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2017 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2016 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2016 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2015 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2015 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST   

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2014 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2014 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2013 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2013 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2012 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

Az egyenes egyenlete

Az $\underline{n}(A,B)$ normálvektorú és a $P(x_0,y_0)$ ponton átmenő $e$ egyenes egyenlete:

\( e: A(x-x_0)+B(y-y_0)=0 \)

Megnézem a kapcsolódó epizódot

Egyenes irányvektora

Az irányvektor az egyenessel párhuzamos nem nullvektor.

Megnézem a kapcsolódó epizódot

Egyenes normálvektora

A normálvektor az egyenesre merőleges nem nullvektor.

Megnézem a kapcsolódó epizódot

Pont és egyenes távolsága a koordinátarendszerben

Egy $P$ pontnak az $\underline{n}(A,B)$ normálvektorú $e$ egyenestől mért távolsága:

\( d(P, e) = \bigm|  \frac{ e(P)}{ \sqrt{A^2+B^2} }  \bigm| \)

Itt $e(P)$ azt jelenti, hogy a $P$ pont koordinátáit behelyettesítjük az $e$ egyenes egyenletébe.

Megnézem a kapcsolódó epizódot

Kör egyenlete

$C(u,v)$ középpontú és $r$ sugarú kör egyenlete:

\( (x-u)^2 + (y-v)^2 = r^2 \)

Megnézem a kapcsolódó epizódot

1.

Végezzük el az alábbi feladatokat:

a) Adottak az $ \underline{a}=(x,3) $ és $ \underline{b}=(5,2) $ vektorok. Állapítsuk meg $x$ értékét úgy, hogy a két vektor merőleges legyen egymásra.

b) Adjuk meg a +90° és -90°-os elforgatottját az $ \underline{a}=(3,2) $ vektornak.

Megnézem, hogyan kell megoldani

2.

Végezzük el az alábbi feladatokat:

a) Írjuk fel az egyenes egyenletét ezekből az adatokból: $P(3,4), \; \underline{n}=(6,7)$

b) Írjuk fel annak az egyenesnek az egyenletét, ami áthalad a $P(3,4)$ és $Q(7,9)$ pontokon.

c) Határozzuk meg ezeknek az egyeneseknek a metszéspontját:

\( e_1: 3x+4y=10 \)

\( e_2: 6x+y=13 \)

d) Számoljuk ki az $ABC$ háromszög magasságpontjának koordinátáit, ha $A(-2,1)$, $B(7,4)$, $C(2,9)$.

Megnézem, hogyan kell megoldani

3.

Végezzük el az alábbi feladatokat:

a) Milyen távol vannak a $Q(1,3)$ és $R(6,3)$ pontok az $e$ egyenestől, ha $e: 3x-4y-6=0$.

b) Egy háromszög csúcsai $A(-2,-3)$, $B(6,3)$, $C(-1,6)$. Határozzuk meg ebben a háromszögben a $c$ oldal hosszát és a $C$ csúcsához tartozó magasságvonal hosszát.

Megnézem, hogyan kell megoldani

4.

Végezzük el az alábbi feladatokat:

a) Ábrázoljuk azt a kört, aminek az egyenlete: $ (x-2)^2 + (y+2)^2 = 4 $

b) Ábrázoljuk azt a kört, aminek az egyenlete: $ x^2+y^2-6x-2y=10 $

c) Ábrázoljuk azt a kört, aminek az egyenlete: $ x^2-8x+y^2+2y=-8 $

Megnézem, hogyan kell megoldani

5.

Keressük annak a körnek az egyenletét, ami érinti a koordinátatengelyeket, és átmegy a $P(1,2)$ ponton.

Megnézem, hogyan kell megoldani

6.

Végezzük el az alábbi feladatokat:

a) Hogyan kell $m$ értékét megválasztani úgy, hogy az $y=mx+4$ egyenes áthaladjon a $2x-y+1=0$ és az $y=x+5$ egyenesek metszéspontján?

b) Írjuk fel annak az egyenesnek az egyenletét, amely áthalad az $x-3y-6=0$ és a $4x+y=0$ egyenesek metszéspontján és normálvektora $(3,1)$.

c) Írjuk fel a háromszög oldalegyeneseinek egyenletét, ha az egyik csúcsa $A(3,-4)$, és két magasságvonalának egyenlete $7x-2y-1=0$ és $2x-7y-6=0$.

Megnézem, hogyan kell megoldani

7.

Határozzuk meg a $(-1,0)$, $(5,0)$ és $(1,4)$ csúcsokkal megadott háromszög súlypontjának, magasságpontjának és a körülírt kör középpontjának a koordinátáit.

Megnézem, hogyan kell megoldani

8.

Mekkorák a háromszög magasságai, ha csúcsai: $A(-4,6)$, $B(-2,-3)$, $C(4,5)$?

Megnézem, hogyan kell megoldani

9.

Egy háromszög oldalegyeneseinek az egyenlete: $5x+2y-29=0$, $9x-y-43=0$, $14x+y-49=0$. Milyen messze van a háromszög súlypontja a háromszög oldalaitól?

Megnézem, hogyan kell megoldani

10.

Számítsuk ki a háromszög területét, ha csúcsai: $A(-1,-1)$, $B(1,5)$, $C(7,-2)$.

Megnézem, hogyan kell megoldani

11.

Számítsuk ki a háromszög területét, ha csúcsai: $A(-2,1)$, $B(7,4)$, $C(2,9)$, és számítsuk ki a magasságpont koordinátáit is.

Megnézem, hogyan kell megoldani

12.

Adott az $ABC$ háromszög, $A(-1,1)$, $B(7,3)$ és $C(3,9)$ csúcsai.

a) Határozzuk meg a súlypont koordinátáit!

b) Határozzuk meg a köré írható kör középpontjának koordinátáit!

c) Határozzuk meg a magasságpont koordinátáit!

Megnézem, hogyan kell megoldani

13.

Adott az $ABC$ háromszög, $A(-2,-3)$, $B(6,3)$ és $C(-1,6)$ csúcsai. Mekkora az $AB$ oldal, és a hozzá tartozó magasság? Mekkora az $AB$ oldalhoz tartozó súlyvonal?

Megnézem, hogyan kell megoldani

14.

Végezzük el az alábbi feladatokat:

a) Mekkora szögben metszi a $3x+2y=5$ egyenletű egyenes az $x$ tengelyt?

b) Írjuk fel annak az egyenesnek az egyenletét, amely áthalad a $P(2,4)$ ponton, és 45 fokos szöget zár be az $x$ tengellyel.

c) Írjuk fel annak az egyenesnek az egyenletét, amely 60 fokos szöget zár be az $x$ tengellyel és az $y$ tengelyt 4-ben metszi.

d) Egy egyenes átmegy a $P(2,5)$ és a $Q(4,1)$ pontokon. Mekkora szögben metszi az $x$ tengelyt?

Megnézem, hogyan kell megoldani

15.

Keressük meg annak a körnek az egyenletét, amely átmegy a $P(3,-3)$ valamint a $Q(8,2)$ ponton és középpontja az $2x-y=4$ egyenletű egyenesen van.

Megnézem, hogyan kell megoldani

16.

Keressük annak a körnek az egyenletét, amely átmegy a $P(3,-3)$ a $Q(8,2)$ és az $R(-1,-1)$ pontokon.

Megnézem, hogyan kell megoldani

17.

Egy rombusz rövidebbik átlójának két végpontja: $B(9,-1)$ és $D(1,5)$. A hosszabbik átló a rövidebb átló kétszerese. Határozzuk meg a másik két csúcs koordinátáit.

Megnézem, hogyan kell megoldani

18.

Írjuk fel annak a körnek az egyenletét, amely a $(2,9)$ ponton áthalad, és mindkét koordináta tengelyt érinti.

Megnézem, hogyan kell megoldani

19.

Keressük meg annak a körnek az egyenletét, amely átmegy a $P(3,0)$, valamint a $Q(-1,2)$ ponton és középpontja az $x-y+2=0$ egyenletű egyenesen van.

Megnézem, hogyan kell megoldani

20.

Határozzuk meg annak a körnek az egyenletét, amely áthalad a $P(-2,-3)$ ponton, és az $e: 4x-3y=26$ egyenest az 5 abszcisszájú pontjában érinti.

Megnézem, hogyan kell megoldani

21.

Határozzuk meg annak a körnek az egyenletét, amely áthalad a $P(5,7)$ ponton, és az $e: 4x+3y=42$ egyenest a 6 abszcisszájú pontjában érinti.

Megnézem, hogyan kell megoldani

22.

Írjuk fel annak a körnek az egyenletét, melynek sugara $2 \sqrt{5}$ és az $e: x+2y-9=0$ egyenes érinti a $P(5,2)$ pontban.

Megnézem, hogyan kell megoldani

23.

Írjuk fel annak a körnek az egyenletét, melynek sugara $2\sqrt{5}$ és az $e: \; x+2y-9=0$ egyenes érinti a $P(5,2)$ pontban.

Megnézem, hogyan kell megoldani

24.

Írjuk fel annak az egyenesnek az egyenletét, amely átmegy a $P(2,7)$ ponton és az $e: x+3y-19=0$ és az $f: 2x-y+15=0$ egyenesek metszéspontján.

Megnézem, hogyan kell megoldani

25.

Keressük meg annak a körnek az egyenletét, amely átmegy a $P(8,5)$, valamint a $Q(2,-3)$ ponton és a középpontja az $x+3y=8$ egyenletű egyenesen van.

Megnézem, hogyan kell megoldani

26.

Keressük annak a körnek az egyenletét, amely átmegy a $P(2,14)$, $Q(12,-10)$, valamint az $R(-5,7)$ pontokon.

Megnézem, hogyan kell megoldani

27.

Keressük meg annak az $x$ tengelyt érinő körnek az egyenletét, amely átmegy a $P(5,2)$ ponton és középpontja az $x+y=6$ egyenletű egyenesen van.

Megnézem, hogyan kell megoldani

A témakör tartalma


Vektorok összeadása, hossza, skaláris szorzata, és 90°-os forgatása

Az egyenes egyenlete, egyenesek metszéspontja

Pont és egyenes távolsága

A kör egyenlete

FELADAT | kör egyenlete

FELADAT | egyenesek egyenletei és metszéspontjai

Hogyan kell kiszámolni egy háromszögben a súlypont, magasságpont és az O pont koordinátáit

Egy háromszögben a magasságvonalak hossza

FELADAT | háromszög súlyvonalai és súlypontja

FELADAT | háromszög területe

FELADAT | háromszög magasságpontja

FELADAT | háromszög nevezetes pontjai

FELADAT | háromszög magasságvonala és oldalai

Az egyenes iránytangenses egyenlete

FELADAT | kör egyenlete

FELADAT | Kör egyenlete három pontja alapján

FELADAT | Rombusz csúcsai vektorokkal

FELADAT | Koordinátatengelyeket érintő kör

FELADAT | Kör egyenlete

FELADAT | Kör és a kört érintő egyenes

FELADAT | Még egy kör és a kört érintő egyenes

FELADAT | kör egyenlete

FELADAT | kör egyenlete

FELADAT | egyenes egyenlete

FELADAT | Kör egyenlete

FELADAT | Kör egyenlete

FELADAT | kör egyenlete

Kapcsolatfelvétel
  • Segítségnyújtás
  • Hibabejelentés
  • Kapcsolatfelvétel
  • Mateking torrent bejelentés
Rólunk
  • A projektről
  • Médiamegjelenések
  • Legyen élmény a matek
  • Mire jó a matek?
Tartalomjegyzék
  • Középiskolai matek
  • Analízis 1
  • Analízis 2
  • Analízis 3
  • Lineáris algebra
  • Valószínűségszámítás
  • Diszkrét matematika
  • Statisztika
  • További tantárgyak
  • Egyetemi tematikák
  • Matek érettségi
GYIK Általános szerződési feltételek Adatkezelési tájékoztató Felhasználás oktatási célra

Cookie-használat módosítása

© Minden jog fenntartva!

Az oldalon található tartalmak részének vagy egészének másolása, elektronikus úton történő tárolása vagy továbbítása, harmadik fél számára nyújtott oktatási célra való hasznosítása kizárólag az üzemeltető írásos engedélyével történhet. Ennek hiányában a felsorolt tevékenységek űzése büntetést von maga után!

barion
macroweb
  • Tantárgyaim