Barion Pixel Sajátbázis | mateking
 

Sajátbázis

A $\varphi$ lineáris leképezésnek a $\underline{b}_1 \; \underline{b}_2 \; \dots \; \underline{b}_n$ bázisban felírt mátrixát úgy kapjuk meg, hogy a bázisvektorok képeit egymás mellé írjuk:

\( (\varphi)_b = \left( \varphi(\underline{b}_1) \; \varphi(\underline{b}_2) \; \varphi(\underline{b}_3) \; \dots \; \varphi(\underline{b}_n) \right) \)

Bármilyen bázist is választunk is $V_1$-ben, a leképezés mátrixa mindig egy nxn-es mátrix lesz. Ha ennek a mátrixnak van n darab független sajátvektora, akkor ezek a sajátvektorok szintén egy bázist alkotnak $V_1$-ben, amit sajátbázisnak nevezünk.

Ha a mátrixnak létezik diagonális alakja, akkor van sajátbázisa, ami fantasztikus dolgokra képes.

1.

Ellenőrizzük, hogy az alábbi leképezések lineáris leképezések-e, ha igen adjuk meg a képteret, a magteret és a transzformáció mátrixát.

\( R^3 \to R^3 \qquad \varphi\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a-b \\ b-a \\ c \end{pmatrix} \qquad a,b,c \in R \)