Jump to navigation

Belépés
  • Elfelejtettem a jelszavam
Regisztráció
 
  • Hogyan működik a mateking?
  • Mire jó a matek?
  • Matek érettségi
  • Képletgyűjtemény
  • Feladatgyűjtemény
  • Rólunk
  • Matek 5. osztály próbaüzem
  • Matek 6. osztály próbaüzem
  • Matek 7. osztály próbaüzem
  • Matek 8. osztály próbaüzem
  • Matek 9. osztály
  • Matek 10. osztály
  • Matek 11. osztály
  • Matek 12. osztály
  • Középiskolai matek (teljes)
  • Középszintű matek érettségi
  • Emelt szintű matek érettségi
  • Egyetemi matek alapozó
Összes egyetemi tantárgy
Legnépszerűbb tantárgyak:
  • Analízis 1
  • Analízis 2
  • Analízis 3
  • Valószínűségszámítás
  • Lineáris algebra
  • Diszkrét matematika
  • Statisztika

mateking

Login
 

Középszintű matek érettségi

Kategóriák
  • Valószínűségszámítás (13,4 pont)
  • Számtani és mértani sorozatok (10,4 pont)
  • Statisztika (8,8 pont)
  • Térgeometria (8,7 pont)
  • Függvényekkel kapcsolatos feladatok (8,6 pont)
  • Koordinátageometria (6 pont)
  • Szöveges feladatok (5,5 pont)
  • Halmazok (5,3 pont)
  • Síkgeometria (5,3 pont)
  • Trigonometrikus geometria feladatok (4,9 pont)
  • Kombinatorika (4,5 pont)
  • Szinusztétel és koszinusztétel (4 pont)
  • Exponenciális függvények és egyenletek (3,2 pont)
  • Másodfokú egyenletek (3,1 pont)
  • Gráfok (2,7 pont)
  • Százalékszámítás és pénzügyi számítások (2,6 pont)
  • Elsőfokú függvények (1,7 pont)
  • Számelmélet (1,5 pont)
  • Egyenlőtlenségek (1,5 pont)
  • Vektorok (0,8 pont)
  • Algebra, nevezetes azonosságok
  • Egyenletrendszerek
  • Bizonyítási módszerek, matematikai logika
  • Abszolútértékes egyenletek és egyenlőtlenségek
  • Gyökös azonosságok és gyökös egyenletek
  • Logaritmus, logaritmikus egyenletek
  • Trigonometrikus egyenletek és egyenlőtlenségek
  • Egybevágósági transzformációk
  • A várható érték

Valószínűségszámítás (13,4 pont)

  • Epizódok
  • Feladatok
  • Érettségik
  • Képletek
01
 
Események, valószínűségek
02
 
Tipikus érettségi feladatok valszámból
03
 
Újabb remek valószínűségszámítás feladatok
04
 
A Binomiális eloszlás szinte minden érettségiben van
05
 
Valszám feladat kockákkal
06
 
Néhány tipikus érettségi feladat
07
 
Újabb csodás valszám feladatok
08
 
Egy lottós valszám feladat
09
 
Egy újabb dobókockás feladat
10
 
Egy visszatevés nélküli mintavétel feladat
11
 
Valszám feladat független eseményekkel
12
 
FELADAT | Hipergeometriai eloszlás
13
 
FELADAT | Binomiális eloszlás
14
 
FELADAT | Binomiális eloszlás
15
 
Feladat | Klasszikus valszám
16
 
FELADAT | Binomiális eloszlás
17
 
FELADAT | Binomiális eloszlás

Válaszd ki, hogy melyik év középszintű érettségi feladataival szeretnél gyakorolni.

2020 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 


 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2020 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 


 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2019 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 


 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2019 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2018 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2018 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2017 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2017 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2016 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2016 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2015 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2015 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST   

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2014 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2014 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2013 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2013 MÁJUSI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

2012 OKTÓBERI MATEK ÉRETTSÉGI FELADATOK

ELSŐ RÉSZ

 

 

MEGNÉZEM A MEGOLDÁST 

 

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MÁSODIK RÉSZ

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

MEGNÉZEM A MEGOLDÁST

 

Binomiális eloszlás

Ezt a képletet hívjuk binomiális eloszlásnak:

\( P = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k} \)

ahol $n$ a kísérletek száma,

$k$ a sikeres kísérletek száma,

$p$ pedig a sikeres kísérlet valószínűsége.

Megnézem a kapcsolódó epizódot

Hipergeometriai eloszlás

A hipergeometriai eloszlás a visszatevés nélküli mintavételhez kapcsolódó eloszlás, képlete pedig:

\( P(X=k)=\frac{\binom{K}{k} \cdot \binom{N-K}{n-k}}{\binom{N}{n}} \)

Megnézem a kapcsolódó epizódot

Visszatevés nélküli mintavétel

A visszatevés nélküli mintavétel tipikus példája, hogy van egy doboz, benne $N$ darab elem. Közülük $K$ darab valamilyen tulajdonságú, az egyszerűség kedvéért hívjuk selejtesnek. Mondjuk sárga vagy szép vagy ronda. Kihúzunk $n$ darab elemet, és ez a képlet meg fogja nekünk mondani, hogy mekkora az esélye, hogy közülük $k$ darab a vizsgált tulajdonságú:

\( P(X=k)=\frac{\binom{K}{k} \cdot \binom{N-K}{n-k}}{\binom{N}{n}} \)

De vannak olyan esetek, amikor a visszatevés nélküli mintavételnél másik képletet kell használnunk. Ezt a másik képletet binomiális eloszlásnak nevezzük, és olyankor használjuk, amikor a selejtek száma helyett csak a selejtek arányát ismerjük. 

Ez a binomiális eloszlás képlete:

\( P = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k} \)

ahol $n$ a kísérletek száma,

$k$ a sikeres kísérletek száma,

$p$ pedig a sikeres kísérlet valószínűsége.

És, hogy mi alapján döntjük el, hogy a két képlet közül melyiket kell használni? A dolog nagyon logikus, nézd meg a kapcsolódó epizódot és minden világos lesz.

Megnézem a kapcsolódó epizódot

Visszatevéses mintavétel

Visszatevéses mintavételről beszélünk, ha egy $p$ valószínűségű elem többszöri kihúzásának esélyét vizsgáljuk úgy, hogy ha kihúzunk egy ilyen elemet, akkor ezt követően azt visszarakjuk.

Például ha azt vizsgáljuk, hogy egy kosárban van 8 piros és 5 kék golyó, és mennyi a valószínűsége, hogy háromszor húzva két piros és egy kék golyót húznánk úgy, hogy a kihúzott golyókat mindig visszatesszük, akkor az egy visszatevéses mintavétel.

A visszatevées mintavételhez kapcsolódó eloszlás a binomiális eloszlás.

Megnézem a kapcsolódó epizódot

1.

Van két dobókocka. Mennyi a valószínűsége, hogy...

a) mindkét dobókockával 1-est dobunk?

b) mindkét dobás egyforma?

c) különböző számokat dobunk?

d) a dobott pontok szorzata páros?

Megnézem, hogyan kell megoldani

2.

a) Egy 52 lapos francia kártyából kihúzunk 5 lapot. Mi a valószínűsége, hogy az első és a harmadik lap ász lesz?

b) Egy 52 lapos francia kártyából kihúzunk 5 lapot. Mi a valószínűsége, hogy csak az első és a harmadik lap ász?

c) Egy 52 lapos francia kártyából kihúzunk 5 lapot. Mi a valószínűsége, hogy a lapok közt két ász lesz?

d) Egy kosárlabdacsapat 9 játékosból áll, közülük öten vannak egyszerre a pályán. Mekkora a valószínűsége, hogy a két legjobb játékos egyszerre van a pályán?

e) Egy kosárlabdacsapat 9 játékosból áll, közülük öten vannak egyszerre a pályán. Mia valószínűsége, hogy a két legjobb játékos közül csak az egyik van a pályán?

Megnézem, hogyan kell megoldani

3.

 

a) Van egy dobókocka, aminek 3 oldala kék, 2 oldala sárga és 1 pedig piros. Nézzük meg, mekkora a sansza, hogy 4 dobásból 2 sárga.

b) Van egy dobókocka, aminek 3 oldala kék, 2 oldala sárga és 1 pedig piros. Mennyi annak a valószínűsége, hogy 4 dobásból 1 piros.

c) Egy dobozban van 3 kék, 2 sárga és 1 piros labda. Kiveszünk a dobozból 4 labdát. Mi a valószínűsége, hogy 1 sárga?

d) Egy dobókocka 3 oldala kék, 2 oldala sárga és 1 oldala piros. Egymás után 4-szer dobunk a kockával. Mi a valószínűsége, hogy 1 sárga?

e) Egy bárban 100-an vannak, közülük 60-an lányok. A vendégek közül kiválasztunk 10 embert. Mi a valószínűsége, hogy 7 lány?

f) Egy bárban a vendégek 60%-a lány. A vendégek közül kiválasztunk 10 embert. Mi a valószínűsége, hogy 7 lány?

Megnézem, hogyan kell megoldani

4.

Két dobókockával egyszerre dobunk. Mi a valószínűsége, hogy

a) mindkét dobás páros?

b) legfeljebb az egyik dobás páros?

c) a dobott pontok szorzata páros?

d) a dobott pontok összege páros?

e) a dobott pontok összege legalább 10?

f) a dobott pontok szorzata 6?

Megnézem, hogyan kell megoldani

5.

 

a) Öt kockával egyszerre dobunk. Mekkora valószínűséggel lesz mind az öt dobás 1-es?

b) Öt kockával egyszerre dobunk. Mekkora valószínűséggel nem lesz egyik dobás sem 1-es?

c) Öt kockával egyszerre dobunk. Mekkora valószínűséggel lesz legalább egy dobás 1-es?

d) Egy városban 0,2 a valószínűsége annak, hogy egyik nap esik az eső. Mekkora a valószínűsége, hogy egy héten minden nap esik?

e) Egy vizsga 100 vizsgázóból átlag 26-nak nem sikerül. Egyik nap 12-en vizsgáznak. Mi a valószínűsége, hogy legalább egy vizsgázónak nem sikerül a vizsga?

Megnézem, hogyan kell megoldani

6.

 

a) Egy telefon biztonsági kódja 6 számjegyből áll és minden számjegy 0-9 bármi lehet. Mi a valószínűsége, hogy ha nem ismerjük a kódot, akkor elsőre kitaláljuk? A kódok hány százalékában szerepel az 1,2,3,4,5,6 számjegyek közül mindegyik?

b) Egy dominókészlet azonos méretű dominókból áll. Minden dominó egyik oldala egy vonallal két részre van osztva. Az egyes részeken elhelyezett pöttyök száma 0-tól 6-ig bármi lehet. Minden lehetséges párosításnak léteznie kell, de két egyforma nem lehet egy készletben. Hány darabból áll egy dominókészlet?

Megnézem, hogyan kell megoldani

7.

Az ötöslottón 90 darab golyóból húznak ki 5 darabot. A golyók 1-től 90-ig vannak számozva. Mi a valószínűsége, hogy

a) a legkisebb kihúzott szám a 64?

b) öt egymás utáni számot húznak ki?

c) csak páratlan számokat húznak ki?

d) a kihúzott számok szorzata kettőhatvány?

Megnézem, hogyan kell megoldani

8.

Egy dobókockával hatszor dobunk egymás után. Mi a valószínűsége, hogy

a) egyik dobás sem 1-es?

b) csak páros számokat dobunk?

c) mindegyik dobás különböző?

Megnézem, hogyan kell megoldani

9.

Egy 20 fős osztályba 8 fiú és 12 lány jár. Kiosztanak közöttük 10 mozijegyet. Mi a valószínűsége, hogy

a) ugyanannyi fiú kap mozijegyet, mint ahány lány?

b) csak lányok kapnak mozijegyet?

c) csak fiúk kapnak mozijegyet?

Megnézem, hogyan kell megoldani

10.

Egy síterepen az egyik felvonó végállomásától három sípálya indul. 20 napból a fekete pálya átlagosan 3 nap van zárva lavinaveszély miatt, a kék átlagosan 2 nap, míg a piros átlagosan 4 nap egymástól függetlenül. Mekkora a valószínűsége, hogy

a) mindhárom pálya nyitva van?

b) csak a kék pálya van zárva?

c) a piros pálya nyitva van?

d) legalább egy pálya nyitva van?

Megnézem, hogyan kell megoldani

11.

Egy üzlet a következő 20 napból 3 nap zárva tart. Kiválasztunk 5 napot, mi a valószínűsége, hogy 3 nap lesz nyitva?

Megnézem, hogyan kell megoldani

12.

Egy bizonyos hónap 30 napjából átlag 12 nap szokott esni. Mi a valószínűsége, hogy egy héten három nap esik?

Megnézem, hogyan kell megoldani

13.

Egy vizsgán a hallgatóknak általában 60%-a megbukik. Egy nap 10-en vizsgáznak, mi a valószínűsége, hogy

a) legfeljebb 2-en mennek át?

b) legalább 2-en mennek át?

Megnézem, hogyan kell megoldani

14.

A H halmaz az első 90 pozitív egész szám halmaza. H-ból véletlenszerűen kiválasztunk két különböző számot. Mi a valószínűsége, hogy a két kiválasztott szám egy derékszögű háromszög fokban mért valamelyik két szöge?

Megnézem, hogyan kell megoldani

15.

A fák egy részében megtelepedett a szú. Bármelyik fát kiválasztva 4% annak a valószínűsége, hogy van benne szú. Egy vásárló 50 fát vett. Mennyi a valószínűsége, hogy legfeljebb egy szúrágta fa kerül a rakományba?

Megnézem, hogyan kell megoldani

16.

Egy dobozban több ezer érme van, amelyek 3%-a hibás. Az érmék közül véletlenszerűen kiválasztunk 80-at. (A kiválasztás visszatevéses mintavétellel is modellezhető.) Mennyi a valószínűsége annak, hogy legfeljebb 2 hibás érme lesz a kiválasztott érmék között?

Megnézem, hogyan kell megoldani

A témakör tartalma


Újabb remek valószínűségszámítás feladatok

Itt az ideje, hogy készítsünk egy rövid kombinatorikai összefoglalót. A középiskolai matek felelevenítésével kezdjük, ahol elvileg mindenki tanult valószínűségszámítást és kombinatorikát. De csak elvileg, éppen ezért teljesen az alapoktól kezdünk és nem építünk a középiskolai matematika tanulmányokra. Kezdjük tehát a középiskolai matematika tananyag összefoglalását és átismétlését.

Van n darab elem

mindet kiválasztjuk

kiválasztunk közülük k darabot

a sorrend számít

a sorrend nem számít

PERMUTÁCIÓ

n darab különböző elem permutációinak száma n faktoriális:

mese:

Hányféleképpen ülhet le öt ember egymás mellé egy padon?

VARIÁCIÓ

n darab különböző elemből kiválasztott k darab elem permutációinak száma.

Hányféleképpen ülhet le öt ember közül három egymás mellé egy padon?

KOMBINÁCIÓ

n darab különböző elem közül kiválasztott k darab elem kombinációinak száma.

Hányféleképpen választhatunk ki öt ember közül hármat?

Ez mind nagyon szép. Most pedig lássunk néhány kombinatorika feladatot megoldással. Mindegyik feladat egyszerű középiskolai matek feladat, egyik sem nehezebb, mint amilyennel a matek érettségin találkozhatunk. Nekünk azért fontosak ezek a kombinatorika feladatok, mert sok izgalmas dolog épül majd az alap kombinatorikára és az alap középiskolai matek tudásra. Lássuk.

Egy 52 lapos francia kártyából kihúzunk 5 lapot.

Mi a valószínűsége, hogy az első és a harmadik lap ász?

kedvező eset

összes eset

Kezdjük az összes esettel.

Az 52 lap közül választunk ki 5 darabot. A kérdés az, hogy számít-e a sorrend

vagy nem.

Mivel a szövegben ilyenek vannak, hogy első lap, meg harmadik lap, a jelek szerint számít a sorrend.

Most lássuk a kedvező eseteket.

Az első lap ász, ez négyféle lehet.

A következő lap elvileg bármi lehet a maradék 51 lapból.

Aztán a harmadik lapnak megint ásznak kell lennie.

Lássuk csak hány ász van még.

Fogalmunk sincs. Ha ugyanis a második helyre is ászt raktunk, akkor már csak kettő.

De ha a második helyre nem, akkor három.

Ez bizony probléma.

A kedvező eset számolásánál mindig a kívánsággal kell kezdeni.

Most tehát azzal, hogy az első lap ász és a harmadik lap is ász.

Utána jöhetnek a többi lapok.

Van még 50 darab lap a második helyre.

Aztán még 49 és 48.

Mi a valószínűsége, hogy csak az első és a harmadik lap ász?

Most is számít a sorrend.

Az összes eset ugyanannyi,mint az előbb.

Lássuk mi van a kedvezőkkel.

Megint a kívánsággal kezdünk.

De most csak ez a két ász van, tehát a második lap nem lehet ász.

Így csak 48 féle lehet.

Aztán 47 és 46.

Mi a valószínűsége, hogy a lapok közt két ász lesz?

Itt nem számít a sorrend ezért kombinációt használunk.

A 4 ászból ki kell húznunk kettőt.

Aztán pedig kell még 3 lap ami már nem ász.

Hát ez remek. Végül nézzünk meg még egy feladatot.

Egy kosárlabdacsapat 9 játékosból áll, közülük öten vannak egyszerre a pályán.

Mekkora a valószínűsége, hogy a két legjobb játékos egyszerre van a pályán?

A kiválasztás sorrendje nem számít, csak az, hogy kiket választunk a pályára.

Így aztán kombinációra lesz szükség.

Nézzük mennyi eset van összesen.

A 9 játékosból kell kiválasztanunk ötöt.

A kedvező amikor a két legjobb a pályán van, vagyis őket mindenképp kiválasztjuk,

és még hármat.

Mi a valószínűsége, hogy a két legjobb játékos közül csak az egyik van a pályán?

Az összes eset itt is ugyanannyi.

A kedvező pedig amikor a két legjobb játékosból választunk egyet

és a többi tehetségtelen amatőr közül még négyet.


Újabb csodás valszám feladatok

Valszám feladat kockákkal

Néhány tipikus érettségi feladat

Két dobókockával egyszerre dobunk. Mi a valószínűsége, hogy

mindkét dobás páros?
legfeljebb az egyik dobás páros?
a dobott pontok szorzata páros?
a dobott pontok összege páros?
a dobott pontok összege legalább 10?
a dobott pontok szorzata 6?

Ha két kockával dobunk, akkor az egyik kockával is hatfélét tudunk dobni…

meg a másikkal is.

Az összes eset tehát 36.

Összes eset:

Most pedig lássuk a valószínűségeket.

egyik kocka: páros

másik kocka: páros

egyik kocka: páros

másik kocka: nem páros

vagy fordítva

vagy

mindkét dobás páratlan

A dobott pontok szorzata akkor lesz páros, ha mindkét dobás páros…

vagy pedig az egyik páros, a másik páratlan.

Végülis mindig páros lesz a szorzat, kivéve olyankor, amikor mindkét dobás páratlan.

Itt jön erre egy másik megoldás is.

Végülis mindig páros lesz a szorzat, kivéve olyankor, amikor mindkét dobás páratlan.

mindkettő

páratlan

Két szám összege akkor páros, ha mindkettő páros…

vagy mindkettő páratlan.

Lássuk, hogyan is lesz a pontok összege 10.

A kérdés úgy szól, hogy legalább 10, tehát az is jó, ha az összeg 11.

És az is jó, ha 12.

Ez hat darab lehetőség.

Nézzük, mikor lesz a szorzat 6.

Van itt ez a két doboz. Az egyikben 4 darab kártya van, a másikban pedig 5.

Véletlenszerűen húzunk mindkét dobozból egy-egy kártyát.

Mi a valószínűsége, hogy a kihúzott kártyákon lévő számok szorzata negatív?

Akkor lesz a szorzat negatív, ha az egyik kártyán pozitív szám van…

és a másikon negatív.

Vagy fordítva.

Az összes eset pedig…

Mi a valószínűsége, hogy a kihúzott kártyákon lévő számok összege páratlan?

Akkor lesz az összeg páratlan, ha az egyik kártyán páros szám van…

a másikon pedig páratlan.

Vagy fordítva.

Öt kockával egyszerre dobunk. Mekkora valószínűséggel lesz mind az öt dobás 1-es?

Annak a valószínűsége, hogy egy dobás 1-es:

Ha van még egy 1-es, akkor ennek az esélye szintén

A két 1-es egyszerre pedig:

A dobások egymástól függetlenek és ilyenkor a valószínűségeket össze kell szorozni.

Aztán, ha dobunk még egy 1-est…

Annak a sansza, hogy mind az öt dobás 1-es:

Most nézzük, mi a valószínűsége annak, hogy öt kockával dobva egyik dobás sem 1-es.

Ez annak a valószínűsége, hogy egy dobás nem 1-es.

Aztán a következő dobás sem 1-es…

és egyik sem.

Végül számoljuk ki annak a valószínűségét, hogy öt kockával dobva legalább egy dobás 1-es.

Ez azt jelenti, hogy vagy egy darab 1-es van…

vagy két darab…

vagy három, vagy négy, vagy öt.

Ezt így külön-külön kiszámolni eléggé sok szenvedéssel járna.

Aki nem annyira szeret szenvedni, jegyezze meg, hogy

Hát, ennyit a kockákról.

Egy városban 0,2 a valószínűsége annak, hogy egy nap esik az eső. Mekkora a valószínűsége, hogy egy héten mindennap esik?

Mekkora a valószínűsége, hogy egy héten egyik nap sem esik?

Mekkora a valószínűsége, hogy egy héten legalább egy nap esik?

Egy vizsga 100 vizsgázóból átlag 26-nak nem sikerül. Egyik nap 12-en vizsgáznak. Mi a valószínűsége, hogy legalább egy vizsgázónak nem sikerül a vizsga?

Itt van például Bob.

Nézzük, mekkora a valószínűsége, hogy nem sikerül a vizsgája.

Annak a sansza pedig, hogy sikerül…

Most pedig jön a szokásos trükk:


A Binomiális eloszlás szinte minden érettségiben van

Egy lottós valszám feladat

Egy újabb dobókockás feladat

Egy visszatevés nélküli mintavétel feladat

Valszám feladat független eseményekkel

FELADAT | Hipergeometriai eloszlás

FELADAT | Binomiális eloszlás

FELADAT | Binomiális eloszlás

Feladat | Klasszikus valszám

FELADAT | Binomiális eloszlás

FELADAT | Binomiális eloszlás

Események, valószínűségek

Tipikus érettségi feladatok valszámból

Kapcsolatfelvétel
  • Segítségnyújtás
  • Hibabejelentés
  • Kapcsolatfelvétel
  • Mateking torrent bejelentés
Rólunk
  • A projektről
  • Médiamegjelenések
  • Legyen élmény a matek
  • Mire jó a matek?
Tartalomjegyzék
  • Középiskolai matek
  • Analízis 1
  • Analízis 2
  • Analízis 3
  • Lineáris algebra
  • Valószínűségszámítás
  • Diszkrét matematika
  • Statisztika
  • További tantárgyak
  • Egyetemi tematikák
  • Matek érettségi
GYIK Általános szerződési feltételek Adatkezelési tájékoztató Felhasználás oktatási célra

Cookie-használat módosítása

© Minden jog fenntartva!

Az oldalon található tartalmak részének vagy egészének másolása, elektronikus úton történő tárolása vagy továbbítása, harmadik fél számára nyújtott oktatási célra való hasznosítása kizárólag az üzemeltető írásos engedélyével történhet. Ennek hiányában a felsorolt tevékenységek űzése büntetést von maga után!

barion
macroweb
  • Tantárgyaim