Ha $\sum{a_n}$ és $\sum{b_n}$ nem negatív tagú sorok, és egy bizonyos tagtól $a_n \leq b_n$ akkor
$\sum{b_n}$ konvergens $\Rightarrow \; \sum{a_n}$ is konvergens
$\sum{a_n}$ divergens $\Rightarrow \; \sum{b_n}$ is divergens
A sorok konvergenciájának megállapítására vonatkozó képletek.
Döntsük el, hogy konvergensek-e a következő végtelen sorok.
a) $$ \sum_{n=1}^{\infty} \frac{\ln{n}}{\sqrt{n}} $$
b) $$ \sum_{n=1}^{\infty} \frac{n^3 + \sqrt{n}}{ n^4-n^3+\sqrt[3]{n}} $$