Alapintegrálok

\( \int x^n \; dx = \frac{ x^{n+1}}{n+1}+c \qquad n \neq -1 \)

\( \int \frac{1}{x} \; dx = \ln{ \mid x \mid} + c \)

\( \int e^x \; dx = e^x + c \)

\( \int a^x \; dx = \frac{a^x}{\ln{a}} + c \)

\( \int \cos{x} \; dx = \sin{x} + c \)

\( \int \sin{x} \; dx = -\cos{x} + c \)

\( \int \frac{1}{\cos^2{x} } \; dx = \tan{x} + c \)

\( \int \frac{1}{\sin^2{x} } \; dx = - \cot{x} + c \)

\( \int \frac{1}{1+x^2} \; dx = \arctan{x} + c \)