- Algebra, nevezetes azonosságok
- Másodfokú egyenletek
- Elsőfokú és másodfokú egyenlőtlenségek
- Gyökös azonosságok és gyökös egyenletek
- Exponenciális egyenletek és egyenlőtlenségek
- Logaritmikus egyenletek és egyenlőtlenségek
- Trigonometrikus egyenletek és egyenlőtlenségek
- Nagyságrend-őrző becslések
- Halmazok
- Kijelentések, kvantorok, logikai állítások
- Teljes indukció
- Komplex számok
- Mátrixok és vektorok
- Lineáris függetlenség, bázis, rang
- Lineáris egyenletrendszerek, mátrix inverze
- Determináns, sajátérték, sajátvektor
- Ortogonális mátrixok, Gram-Schmidt ortogonalizáció
- Függvények ábrázolása
- Inverz függvények
- Egyenletrendszerek
- Abszolútértékes egyenletek, egyenlőtlenségek
- Gráfok
- Vektorok
- Koordinátageometria
- Polinomok
- Feladatok függvényekkel
- Százalékszámítás és pénzügyi számítások
- Számelmélet
- Szöveges feladatok
- Síkgeometria
- Középpontos hasonlóság
- Trigonometria
- Szinusztétel, Koszinusztétel
- Térgeometria
- A parabola
- Számtani és mértani sorozatok
- Kombinatorika
- Valószínűségszámítás
- Statisztika
Abszolútértékes egyenletek, egyenlőtlenségek
Abszolútérték
Egy szám abszolútértékén a nullától való távolságát értjük.
Precizebben egy $x$ szám abszolútértékén ezt értjük:
\( \mid x \mid = \begin{cases} x \; \text{ha} \; 0 \leq x \\ -x \; \text{ha} \; x<0 \end{cases} \)
6.
Oldjuk meg az alábbi abszolútértékes egyenletet.
\( \left| \frac{x+4}{3}-2 \right| \geq x+6 \)
A témakör tartalma
Mi az az abszolútérték? Abszolútértékes egyenletek
FELADAT | abszolútértékes egyenlet
FELADAT | abszolútértékes egyenlet
FELADAT | abszolútértékes egyenlőtlenség
FELADAT | abszolútértékes egyenlőtlenség
FELADAT | abszolútértékes egyenlőtlenség