Számtani és mértani sorozatok

A témakör tartalma


Számtani és mértani sorozatok

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

FELADAT

A számtani sorozatok
Itt röviden és szuper-érthetően elmeséljük, hogy mik azok a számtani sorozatok, mire lehet őket használni és megoldunk néhány számtani sorozatos feladatot. Megnézzük a számatani sorozatok összegképletét, a sorozat általános tagját, és tulajdonságait. Egy cég árbevétele az első évben 100 ezer dollár volt és azóta minden évben 20 ezer dollárral nő. Mekkora lesz az árbevétel a hatodik évben? Nézzük meg egyesével az éves árbevételeket: A cég éves árbevételei egy sorozatot alkotnak. Egy olyan sorozatot, ahol minden tag pontosan 20-szal nagyobb az előző tagnál. Azokat a sorozatokat, ahol minden tag pontosan ugyanannyival nagyobb az előző tagnál, számtani sorozatoknak nevezzük. A sorozat differenciája az a szám amennyivel mindegyik tag nagyobb az előzőnél. Ha tudjuk, hogy mennyi a sorozat első tagja és a differencia, akkor bármelyik tagot ki tudjuk számolni. A hatodik évben az árbevétel: Most próbáljuk meg kideríteni, hogy mekkora a cég árbevétele a hat év alatt összesen. Nos, úgy néz ki 900 ezer dollár az árbevétel a hat év alatt összesen. A számtani sorozat első n darab tagjának összege:
A mértani sorozat
Lássuk, hogy mik azok a mértani sorozatok, mire lehet őket használni és megoldunk néhány mértani sorozatos feladatot. Megnézzük a mértani sorozatok összegképletét, a sorozat általános tagját, és tulajdonságait. Itt jön egy másik történet. A számtani sorozat: Egy cég árbevétele az első évben 100 ezer dollár volt és azóta minden évben 2%-kal nő. Mekkora lesz az árbevétel a hatodik évben? Azokat a sorozatokat, ahol minden tag pontosan q-szor annyi, mint az előző tag, mértani sorozatnak nevezzük. A hatodik évben az árbevétel: Ha megint kíváncsiak vagyunk rá, hogy mekkora volt az árbevétel a hat év alatt összesen, akkor most a mértani sorozat összegképletére lesz szükség. Íme a mértani sorozat összegképlete: Az első hat év összes árbevétele ez alapján: A mértani sorozat: Egy sorozatról tudjuk, hogy a8 = 2 és a7 = 162. Mennyi a10, ha a) számtani sorozatról van szó. b) mértani sorozatról van szó.