Lineáris algebra

A témakör tartalma


Mátrixok

A mátrixok teljesen ártalmatlan teremtményei a matematikának.

Egy -as mátrix tulajdonképpen nem más, mint egy táblázat, ami n darab sorból és k darab oszlopból áll.

A mátrixokat az ABC nagy betűivel jelöljük. Itt van például ez:

Ez egy (2X3)-as mátrix.

A mátrixok elemeit kettős indexezéssel látjuk el. Az elemeknek van egy sorindexük,

és egy oszlopindexük.

A mátrixok elemeit kettős indexezéssel látjuk el. Az elemeknek van egy sorindexük,

és egy oszlopindexük.

Egy -as mátrix, ami  n  darab sorból és  k  darab oszlopból áll,

tehát valahogy így néz ki:

A mátrixok marhára hasznosak számunkra, erről fog szólni lényegében az egész lineáris algebra témakör.

Mielőtt azonban hasznosságukról személyesen is megbizonyosodhatnánk, előbb nézzük meg milyen műveleteket végezhetünk velük.

1.SKALÁRSZOROS

A skalár nem egy betegség, azt jelenti, hogy valamilyen szám, legtöbbször valós szám.

2.ÖSSZEADÁS

Egy -as mátrixhoz csak egy másik -as mátrixot adhatunk hozzá.

3.SZORZÁS

Na ez a legizgalmasabb.

Egy -as mátrixszal csak egy -es mátrixot szorozhatunk.

A szorzat mátrixnak annyi sora lesz, mint A-nak és annyi oszlopa, mint B-nek, elemei pedig úgy keletkeznek, hogy az A egyik sorát szorozzuk B-nek egy oszlopával

Jön a trükk, tudományos nevén Falk-séma. Ennek az a lényege, hogy a mátrixokat sarkosan helyezzük el, valahogy így:

Kész a szorzat!

A mátrixok szorzásának egyik érdekes tulajdonsága,

hogy nem kommutatív.

Ha például megpróbáljuk ezt a szorzást fordítva elvégezni,

kiderül, hogy nem is lehet.


Néhány speciális mátrix

Ismerkedjünk meg néhány speciális mátrixfajtával.

KVADRATIKUS MÁTRIX 

négyzetes mátrix vagyis ugyanannyi sora van, mint oszlopa

példa:

DIAGONÁLIS MÁTRIX

olyan kvadratikus mátrix, aminek a főátlóján kívüli elemek nullák

példa:

A diagonális mátrixoknak tehát csak a főátlója érdekes, mivel az összes többi elem nulla.

Ezért aztán vannak akik csak a főátló elemeket írják le. Ez a fura jel

valójában egy diagonális mátrix

EGYSÉGMÁTRIX

olyan mátrix, ami azt tudja, hogy bármely  mátrixra  

az egységmátrixok olyan diagonális mátrixok, aminek minden főátló-eleme egy

INVERZ MÁTRIX

jele , és ez egy olyan mátrix, ami azt tudja, hogy

  (jobb inverz)         (bal inverz)

Később látni fogjuk, hogy nem is olyan egyszerű elővarázsolni egy mátrix inverzét.

Ez az inverz dolog valós számoknál sokkal könnyebb, ott ugyanis

  inverze      mert ugye 

  inverze      mert ugye 

TRANSZPONÁLT

a mátrix sorainak és oszlopainak a felcserélése, jele  vagy                                

SOR OSZLOP  OSZLOP SOR

példa:

        vagy       

Azokat a mátrixokat, amelyek transzponáltja önmaga szimmetrikus mátrixnak nevezzük.

Itt van például egy szimmetrikus mátrix:

Mindezek jelenleg nem tűnnek túl izgalmasnak, de hamarosan majd elérkezik az idő, amikor kelleni fognak.

Most viszont jöjjenek a vektorok!


Vektorok

Azokat a mátrixokat, amiknek csak egyetlen oszlopuk van, vektoroknak nevezzük.

A vektorokat az abc kis betűivel jelöljük és aláhúzzuk őket.

Itt van például két vektor:

Az  vektor -es vektor, a  pedig -es, de a  megemlítése teljesen felesleges, hiszen éppen azért nevezzük őket vektoroknak, mert csak egyetlen oszlopuk van.

Bőven elegendő tehát csak arról említést tenni, hogy hány darab számot tartalmaz maga a vektor. Ezeket a számokat a vektor koordinátáinak nevezzük.

Megnyugtató, hogy amit a geometriában vektornak tekintünk,

és amit az imént vektorként definiáltunk megfeleltethetők egymásnak.

Ha ugyanis veszünk mondjuk a térben három egyenest úgy,

hogy egymásra merőlegesek legyenek majd pedig

ellátjuk őket egy skálázással, akkor a geometriai vektorok

egyértelműen megfeleltethetők számhármasoknak.

Vagyis amikor vektorokról beszélünk, egyszerre gondolhatunk

-es mátrixokra és  geometriai alakzatokra.

Lássuk milyen műveleteket tudunk vektorokkal végezni.

MŰVELETEK VEKTOROKKAL

1. SKALÁRSZOROS 

példa:

2. ÖSSZEADÁS          

példa:

TULAJDONSÁGOK:

kommutatív:

asszociatív:

3. SZORZÁS 

skaláris szorzat:                                       diadikus szorzat:

TULAJDONSÁGOK:

kommutatív:

nem asszociatív:

 és  

     és

a skaláris szorzat:

diadikus szorzat:

TULAJDONSÁGOK:

nem kommutatív

nem asszociatív

példa:

 és

a diadikus szorzat:

A kétféle szorzás közül a skaláris szorzat

nekünk sokkal hasznosabb lesz, így hát

elbúcsúzunk a diadikus szorzattól.

A skaláris szorzatra pedig bevezetünk

egy egyszerű jelölést.

Ezzel megspóroltunk néhány *-ot.

De lássuk mire jó még a skaláris szorzat.


Vektorok által bezárt szög kiszámolása

A vektorok skaláris szorzása azon kívül, hogy remek szórakozás, arra is jó, hogy kiszámoljuk, két vektor mekkora szöget zár be egymással.

Van ugyanis a skaláris szorzásnak egy másik képlete is:

ahol  a két vektor által bezárt szög,

 vagyis az  vektor hossza

 vagyis a  vektor hossza

A vektorok közti szöget úgy tudjuk kiszámolni, ha mindkét módon felírjuk a skaláris szorzatukat.

Itt van például

A skaláris szorzat a korábbi képlettel:

A skaláris szorzat az új képlettel:


Lineárisan független és összefüggő vektorok

LINEÁRISAN FÜGGETLEN ÉS LINEÁRISAN ÖSSZEFÜGGŐ VEKTOROK

Kezdjük két izgalmas definícióval. Először lássuk mit is akarnak ezek pontosan, aztán rögtön nézünk is rájuk példákat, hogy mindez érthető is legyen.

A  vektorok lineárisan függetlenek, ha

csak úgy teljesül, ha minden

A  vektorok lineárisan összefüggők, ha

úgy is teljesül, hogy van olyan

Nézzünk ezekre példákat! Itt vannak mondjuk ezek a vektorok:

Nézzük meg, hogy ezek a vektorok melyik típusba tartoznak, vagyis hogyan lesz

Ha mindegyik  akkor persze a nullvektort kapjuk.

Az már érdekesebb, hogy ha      akkor

nos akkor is a nullvektort kapjuk.

Tehát úgy is ki tud jönni a nullvektor, ha nem minden , sőt most éppen egyik se. Ilyenkor azt mondjuk, hogy ezek a vektorok lineárisan összefüggők.

Ennek az a nagyon egyszerű magyarázata, hogy a harmadik vektor az első kettő összege.

Vagyis a harmadik vektor a másik két vektor segítségével előállítható, összefügg velük.

Ezt a tényt nevezzük úgy, hogy a vektorok lineárisan összefüggők és ezért kaphatunk nullvektort úgy, hogy nem mindegyik .

Vannak aztán olyan vektorok is, amik nem függnek össze.

Nézzük meg, mi a helyzet ezekkel:

Az, hogy ha mindegyik vektorból nullát veszünk, most is nullvektort kapunk nem túl meglepő.

Ami érdekesebb, hogy ezúttal semmilyen más esetben nem kaphatunk nullvektort.

Ha például az első vektorból nem nullát veszünk, biztosan nem kaphatunk nullvektort.

Nézzük meg! Vegyünk belőle mondjuk 6-ot.

A második és harmadik vektor első koordinátája nulla, ők tehát nincsenek hatással az első koordináta alakulására. A második és harmadik vektorból így vehetünk bármennyit, az első koordináta így is úgy is az lesz, hogy 6.

Ha tehát nullvektort szeretnénk, az első vektorból mindenképpen nullát kell vennünk.

Aztán jön a második vektor. Ha nem nullát veszünk belőle, akkor a második koordinátával adódnak problémák.

Az első és harmadik vektorok ugyanis nincsenek hatással a második koordináta alakulására.

És hasonló a helyzet a harmadik vektorral is. Ezek a vektorok tehát lineárisan függetlenek.

Csak úgy kaphatunk nullvektort, ha mindegyikből nullát veszünk.

Megkérdezhetjük persze, hogy tulajdonképpen miért ennyire fontos ez, hogy mindenféle vektorokból miként állítható elő a nullvektor. A válasz hamarosan kiderül. Nézzük meg a következő képsort!


A generátorrendszer és a bázis

Egy V vektortérben a  vektorok generátor-rendszert alkotnak,ha minden

 vektor a V vektortérben előáll  alakban.

Vegyük például az  vektorteret, vagyis a hétköznapi értelemben vett teret.

Ebben a vektortérben generátor-rendszert alkot a

mert segítségükkel minden vektor előáll.

Nézzük meg! Van itt mondjuk egy vektor

ami valóban előállítható a  vektorokkal.

Bármilyen  vektor előállítható. Ha mondjuk

Akkor íme, már meg is van:

Ha ezekhez a vektorokhoz egy újabb vektort hozzáveszünk, akkor ugyanúgy generátor-rendszert kapunk.

Vegyük hozzá mondjuk ezt:

Ha a  vektort eddig elő tudtuk előállítani, akkor ezután is elő tudjuk:

Egyszerűen nullát veszünk az új vektorból, így olyan,mintha az új vektor ott se volna.

Ha viszont az eredeti generátorrendszerből egy vektort elveszünk, akkor az már nem generátor-rendszer.

Próbáljuk csak meg a  vektort a megmaradt két vektorból előállítani. Nem fog menni.

Érdemes tehát megjegyezni, hogy egy generátor-rendszerhez újabb vektorokat hozzávéve ismét generátor-rendszert kapunk, ha viszont elveszünk belőle vektorokat, akkor már nem biztos.

A kérdés az, hogy -ban hány darab vektor lehet független és hány darab vektor lehet generátor-rendszer. Erről szól a következő remek táblázat.

vektorok

száma

megadható-e ennyi vektor úgy, hogy független legyen

-ban

megadható-e ennyi vektor úgy, hogy generátor-rendszer legyen -ban

1

2

3

4

5

Egy darab vektor biztosan megadható úgy, hogy független legyen, viszont nem elegendő ahhoz, hogy generáljon.

Ő egymaga, csak egy egyenest képes előállítani.

Két vektor is megadható úgy, hogy független legyen,viszont ezek sem generátor-rendszer.

Ezek ketten egy síkot feszítenek ki.

Vagyis a sík minden vektorát előállítják, de mást nem.

Három vektor még mindig megadható úgy, hogy független legyen, és ahogyan ezt már az előbb láttuk generátor-rendszer is lesz.

Ez a három vektor kifeszíti a teret.

Most vegyünk egy negyedik vektort is.

Mivel az eddigi három vektor generátor-rendszer, így bármi is ez a negyedik vektor, azt ők képesek előállítani.

Vagyis ezek négyen már nem függetlenek, de továbbra is generátor-rendszer.

Ugyanez a helyzet,ha hozzáveszünk még egy ötödik vektort is.

-ban pontosan három vektor adható meg úgy, hogy azok még éppen függetlenek legyenek,de már generáljanak.

A független generátor-rendszert nevezzük bázisnak.

Egy vektortér dimenziója a bázis elemszáma. Így jutunk el tudományosan arra az álláspontra, hogy a tér dimenziója éppen három.

Ha egy független rendszerből egy vagy több vektort elhagyunk,

független rendszert kapunk

(ha hozzáveszünk vektorokat, ki tudja, mi történik)

Ha egy generátor-rendszerhez egy vagy több vektort hozzáveszünk,

generátor-rendszert kapunk

(ha elveszünk vektorokat, ki tudja, mi történik)

Ha -ben van n darab független vektor, akkor az generátor-rendszer is

(mert bázis)

Ha -ben van n darab vektorból álló generátor-rendszer,

akkor ezek a vektorok függetlenek is

(mert bázis)

A bázis minden vektort egyértelműen állít elő, míg -ben azok a

generátor-rendszerek pedig, amelyek n-nél több vektorból állnak,

minden vektort végtelensokféleképpen


Vektorrendszer rangja és egyéb érdekességek

Az előzőekben megnéztük mit jelent az, hogy egy vektorrendszer független, mit jelent

az, hogy összefüggő.

Aztán megnéztük mi az a generátor-rendszer.

Kiderült, hogy ha egy generátor-rendszerhez egy vagy több vektort hozzáveszünk, szintén generátor-rendszert kapunk. Ha viszont elveszünk belőle vektorokat, akkor előbb utóbb már nem lesz generátor-rendszer.

Az is kiderült, hogy ha egy független rendszerből egy vagy több vektort elhagyunk, akkor továbbra is független rendszert kapunk, de ha újabb vektorokat veszünk hozzá, akkor előbb utóbb a vektorok már összefüggők lesznek.

Mindezt jól szemléltethetjük mondjuk az  vektortérben,

vagyis a hétköznapi értelemben vett térben.

Ha egy független rendszerhez elkezdünk újabb vektorokat hozzávenni, az előbb utóbb összefüggő lesz.

Ha egy generátor-rendszerből elkezdünk vektorokat elhagyni, az előbb utóbb már nem lesz generátor-rendszer.

És van egy mágikus pont amikor már éppen elég vektorunk van ahhoz, hogy generáljanak, de még nincsenek túl sokan ezért függetlenek.

Ezt a független generátor-rendszert nevezzük bázisnak.

A bázis elemszámát pedig a vektortér dimenziójának.

Itt jön még egy fontos definíció, amit rangnak nevezünk.

Egy vektorrendszer rangja a benne lévő független vektorok

maximális száma.

-ban a rang például maximum három lehet.

A rang kiszámolására később remek módszereink lesznek majd, jelenleg csak kevésbé megnyugtató módon, ránézésre tudjuk megállapítani.

Van itt például ez a vektorrendszer:

A negyedik vektor az első kétszerese,

így legjobb esetben is három független

vektorunk van.

A harmadik vektor pedig az első kettő

összege, így már csak két független

vektor maradt.

Ezek már függetlenek, tehát a rang 2,

de később lesz egy igazán remek

technológiánk a rang kiszámolására.

Egy vektorrendszer rangja Itt jön még egy fontos definíció, amit rangnak nevezünk.

Egy vektorrendszer rangja a benne lévő független vektorok

maximális száma.

BÁZIS=FÜGGETLEN

GENERÁTOR-RENDSZER

A  vektorok lineárisan függetlenek, ha

csak úgy teljesül, ha minden

A  vektorok lineárisan összefüggők, ha

úgy is teljesül, hogy van olyan

Egy V vektortérben a  vektorok

generátor-rendszer, ha minden  vektor előáll

 alakban.

Legyen  vektorok.

Az alábbi állítások közül melyik igaz?

Ha  lineárisan független, akkor

 is lineárisan független.

Nézzük meg, hogy  függetlenek-e.

Vegyük egy lineáris kombinációjukat:

Ha ez csak úgy teljesül, hogy  mind nulla,

akkor függetlenek, ha úgy is lehetséges, hogy nem

mindegyik nulla, akkor összefüggők.

Vagyis az a kérdés, hogy mennyi .

Felbontjuk a zárójeleket :

Aztán összegyűjtjük hány darab , hány darab  

és hány darab  vektor van.

Mivel az  vektorok lineárisan függetlenek,

itt egészen biztos, hogy minden együttható nulla, vagyis

[*]

Úgy tűnik  mindegyike nulla, vagyis  lineárisan függetlenek.

Ha  generátor-rendszer,

akkor  is az.

Az  vektorok akkor generátor-rendszer,

ha minden  vektort előállítanak:

A kérdés az, hogy ugyanez a  előáll-e az

 vektorokból is. Nézzük meg!

Felbontjuk a zárójeleket :

Aztán összegyűjtjük hány darab , hány darab  

és hány darab  vektor van.

A jelek szerint  előáll.

Ha  lineárisan független, akkor

 is lineárisan független.

Ez egészen biztosan nem igaz, mert

Vagyis van olyan lineáris kombinációjuk,

ami a nullvektort adja, pedig egyik vektorból

sem nulla darabot vettünk.

Ha  lineárisan független, akkor

 is lineárisan független.

Nézzük meg, hogy  függetlenek-e.

Ehhez vegyük egy lineáris kombinációjukat:

Ha ez csak úgy teljesül, hogy  mindketten nulla,

akkor függetlenek, ha úgy is lehetséges,

hogy az egyik nem nulla, akkor összefüggők.

Vagyis az a kérdés, hogy mennyi .

Felbontjuk a zárójeleket :

Aztán összegyűjtjük hány darab , hány darab  

és hány darab  vektor van.

Mivel az  vektorok lineárisan függetlenek,

itt egészen biztos, hogy minden együttható nulla,

vagyis  és  ami azt jelenti,

hogy  is független.

Ha  lineárisan független,

akkor  is lineárisan független.

Ezúttal a

lineáris kombinációból indulunk ki.

Ezt kéne valahogy visszavezetni az

vektorok lineáris kombinációjára.

De néha nem árt kicsit gondolkodni.

Vegyük ugyanis például azt az esetet, amikor  nullvektor.

Ekkor  és  ezek a vektorok függetlenek, de  egészen biztosan összefüggő, mert köztük van a nullvektor.

Érdemes megjegyezni, hogy ha egy vektorrendszerben benne van a nullvektor, akkor az mindenképpen lineárisan összefüggő.

Ha  generátor-rendszer,

akkor  is az.

Nos az, hogy  generátor-rendszer,

azt jelenti, hogy ők minden vektort előállítanak.

Mivel  vektorokból viszont  és  

előáll, biztos, hogy  generátor rendszer.

Az  vektorokból először legyártjuk

 és  vektorokat, akik pedig, mivel generátor-

rendszer,  már mindenki mást előállítanak.

Vagyis jegyezzük meg, hogy ha egy vektorrendszer vektoraiból elő tudunk állítani generátor-rendszert, akkor maguk a vektorok is generátor-rendszer.


Vektorok előállíthatósága

Gauss elimináció és elemi bázistranszformáció

Egyenletrendszerek megoldása elemi bázistranszformációval

Itt jön egy egyenletrendszer.

Érdemes generáló elemet úgy választani, hogy a sorában és oszlopában jó sok nulla legyen.

Ennek előnyeit pillanatokon belül élvezhetjük.

Legyen mondjuk ez.

Hát ugye  az nincs

 az nincs és  sincs

Érdemes generáló elemet úgy választani, hogy a sorában és oszlopában jó sok nulla legyen.

Ennek előnyeit pillanatokon belül élvezhetjük.

Legyen mondjuk ez.

A nulla miatt ebben az oszlopban minden elemből nullát vonunk ki,

tehát az egész oszlop marad.

Ezért érdemes úgy választani generáló elemet, hogy a sorában

és oszlopában jó sok nulla legyen.

Hát ezért éri meg így választani.

A nullák megkönnyítik az életünket.

Kiszámolni csak ezeket kell.

A nulla miatt ebben az oszlopban mindenki marad

Sőt, ebben a sorban is mindenki marad.

És ebben a sorban is.

Alig kell valamit számolni.

Ezt az egyet kell kiszámolni:


Egyenletrendszerek megoldása Gauss eliminációval

Végtelen sok megoldás, nulla megoldás, szabadságfok (bázistranszf.)

Nézzünk meg két nagyon izgalmas egyenletrendszert!

Ebben az egyenletrendszerben valójában

csak két egyenlet van.

A harmadik egyenlet ugyanis az első kettő összege.

Ilyen alapon lehetne még egy negyedik, ötödik,

sőt hatodik egyenlet is.

Valójában tehát csak két egyenlet van, vagyis több

az ismeretlen, mint ahány egyenlet, és ilyenkor

az egyenletrendszernek nincs egyértelmű megoldása.

Na ennyi elég

Ebben az egyenletrendszerben a harmadik egyenlet

szintén az első kettő összege, de van egy kis gond.

A jobb oldal ugyanis nem stimmel, mert 5 helyett 6 van.

Ilyenkor ugye nem tud egyszerre mindegyik egyenlet

teljesülni, vagyis az egyenletek ellentmondanak,

és ezért az egyenletrendszernek nincs megoldása.

Van tehát két egyenletrendszerünk, és mi előre tudjuk, hogy az egyiknek végtelen sok megoldása lesz, a másiknak pedig nem lesz megoldása.

Nézzük meg, hogy ha elkezdjük megoldani ezeket az egyenletrendszereket a jól bevált elemi bázistranszformációval, akkor vajon hogyan fog kiderülni, hogy az egyiknek

végtelen sok megoldása van, a másiknak pedig nincs megoldása.

Itt kezdődnek a problémák.

-at ugyanis nem tudjuk lehozni, mert 0-t nem választhatunk generáló elemnek.

A bázistranszformáció tehát úgy ér véget, hogy marad egy –s sor.

HA MARADNAK -S SOROK, AHOL MÁR NEM TUDUNK GENERÁLÓ ELEMET VÁLASZTANI, OLYANKOR MINDIG VÉGTELEN SOK MEGOLDÁS VAN, VAGY NINCS MEGOLDÁS.

HA A MEGMARADT -S SOR ILYEN,

AKKOR VÉGTELEN SOK MEGOLDÁS VAN

x-es oszlop

0

0

HA A MEGMARADT -S SOR ILYEN,

AKKOR NINCS MEGOLDÁS

x-es oszlop

0

NEM 0

A MEGOLDÁS LEOLVASÁSA A TÁBLÁZATBÓL

A fent maradt változók úgynevezett szabad változók, ők t, s és egyéb néven szerepelnek tovább a történetben.

A MEGOLDÁS:

ÁLTALÁNOS MEGOLDÁS:

SZABADSÁGFOK=ahány  fönt marad

(most a szabadságfok 1)

RANG=ahány  levihető

(most a rang 2)

A MEGOLDÁS LEOLVASÁSA A TÁBLÁZATBÓL

Itt már nincs további teendő


Végtelen sok megoldás, nulla megoldás, szabadságfok (Gauss)

Egyenletrendszer végtelen sok megoldással (Bázistranszf.)

Egyenletrendszer végtelen sok megoldással (Gauss)

Egy paraméteres egyenletrendszer (Bázistranszf.)

Az és  paraméterek milyen értékeire lesz nulla darab, egy darab illetve végtelen sok megoldása a következő egyenletrendszernek?

Elkezdjük megoldani a bázistranszformációval.

Olyan sorban és oszlopban, ahol paraméter van, nem ajánlatos generáló elemet választani.

Ezeket tehát kerüljük el!

Van itt ez a marhajó 1-es, válasszuk ezt.

Elkerüljük a paramétereket, amíg lehet.

Most elkezdünk egy kicsit gondolkodni.

1.ESET   és

végtelen sok megoldás

2.ESET   és

nincs megoldás

3.ESET   és

 levihető és egy megoldás

Na ennyi gondolkodás elég is volt.


Egy paraméteres egyenletrendszer (Gauss)

Egy rondább paraméteres egyenletrendszer (Bázistranszf.)

Az ,  és  paraméterek milyen értékeire lesz nulla darab, egy darab illetve végtelen sok megoldása a következő egyenletrendszernek?

Amíg lehet ne válasszunk generáló elemet olyan sorban vagy oszlopban,

amiben paraméter van.

van itt ez a remek 1-e, válaszzuk ezt!

Aztán ezt a másik 1-est választjuk. Marha nagy szerencsénk van a nullákkal.

A nulla miatt ebben a sorban minden elemből nullát vonunk ki,

tehát az egész sor marad ahogy van,

meg itt is,

sőt itt is.

Ezért érdemes úgy választani generáló elemet, hogy a sorában

és oszlopában jó sok nulla legyen. A nullák megkönnyítik az életünket.

A bázistranszformáció itt elakad, a legalsó sorban ugyanis csupa nulla van, a felette

lévőben pedig paraméter.

Kezdjünk el kicsit gondolkodni!

1.ESET  

nincs megoldás  és    bármi lehet.

2.ESET  

nincs megoldás,  és  bármi lehet.

3.ESET  és

ekkor  levihető, végtelen sok megoldás, a szabadságfok egy

Van itt még valami.

Itt ugye, ha nem nulla van, akkor nincs megoldás.

De itt mindegy mi van, ha például ,

ennek akkor is van megoldása.

Ne felejtsük el ugyanis, hogy ezek

a feltételek csak -s sorokra vonatkoznak.

Ez -s sor, tehát itt

tényleg nincs megoldás.

Ebben a sorban viszont már x van,

így semmilyen szabálynak nem kell teljesülnie.


Egy rondább paraméteres egyenletrendszer (Gauss)

Vektorrendszer rangjának kiszámolása (Bázistranszf.)

Számítsuk ki a

vektorokból álló vektorrendszer rangját, illetve állapítsuk meg, hogy előállítható-e segítségükkel az  és  vektor.

 illetve  

Akkor állítható elő az  vektor, ha léteznek olyan  számok, hogy

    illetve  

Ez tulajdonképpen két egyenletrendszer:

Ezeket kell megoldanunk. Ha van megoldás, akkor az adott vektor előállítható, ha nincs megoldás, akkor nem állítható elő.

megoldjuk:

van megoldás,

így az  vektor előállítható

Például

Jön a szokásos, és persze nagyon izgalmas bázistranszformáció.

nincs megoldás,

ezért a  vektor sajna nem állítható elő

A bázistranszformáció itt sajnos elakad, mert az -s sorokban már csak nullák vannak.

Ilyenkor vagy végtelen sok megoldás van vagy nincs megoldás.

Lássuk, hogyan áll elő az  vektor!

Az egyenletrendszer megoldását a

szokásos módon olvassuk le.

 és  tetszőleges

Ha mondjuk  és  nulla, akkor

A vektorrendszer rangja annyi, ahány x-et lehoztunk, vagyis most éppen kettő.


Vektorrendszer rangjának kiszámolása (Gauss)

Vektorrendszer rangja és vektorok előállíthatósága (Bázistranszf.)

Az      független vektorok, és

Mekkora a  vektorrendszer rangja, illetve előállítható-e velük a  vektor?

A  vektor akkor állítható elő, ha van olyan  amire

A jobb oldalt átrendezzük úgy, hogy lássuk mennyi van az      vektorokból

Mivel      független vektorok, ha például a bal oldalon egy darab  van,

akkor a jobb oldalon is egy darab kell, hogy legyen,

vagy ha a bal oldalon két  van, akkor jobb oldalon is.

Érdemes megfigyelni, hogy ezt a táblázatot

rögtön a feladatból is felírhatjuk.

Nincs más dolgunk, mint összeszámolni, hány darab  van,

aztán azt, hogy hány darab  és végül hány .

A megoldás:      

A vektor előáll:  

A vektorrendszer rangja pedig, mivel mindhárom x-et lehoztuk,

így a jelek szerint három.


Vektorrendszer rangja és vektorok előállíthatósága (Gauss)

Mátrix inverze négyzetes mátrixoknál (Bázistranszf.)

Most egy nagyon izgalmas dologgal, a mátrixok inverzével fogunk foglalkozni.

Az   -es   mátrix inverze egy olyan  mátrix, ami azt tudja, hogy

A mátrixok szorzása nem kommutatív, tehát  ha a szereplőket megcseréljük,

akkor lehet, hogy valami egészen más  mátrixszal kell az -t szorozni ahhoz, hogy az egységmátrixot kapjuk.

Mindkét  mátrixot  inverznek nevezzük

    ilyenkor  jobb oldali inverz

    ilyenkor  bal oldali inverz

Az -es mátrixoknak azonban megvan az a remek tulajdonsága,

hogy a szorzás sorrendje az inverznél mindegy, vagyis

Tehát a jobb és bal inverz ilyenkor megegyezik.

Mi most ilyen -es mátrixok inverzét fogjuk kiszámolni,

és maradjunk ennél a sorrendnél.

Itt van például egy mátrix:

Próbáljuk meg kiszámolni az inverzét.

Egy olyan mátrixot kell találnunk, hogy az eredeti mátrixszal megszorozva az egységmátrixot kapjuk.

A kérdőjelek nem igazán segítenek a válasz megtalálásában.

Írhatnánk helyette betűket, hogy a, b, c, meg ilyenek.

Vagy hívhatnánk az elemeit a szokásos jelöléssel úgy, hogy  meg  meg  stb.

De inkább egy másfajta jelölést fogunk használni, és hamarosan az is kiderül majd, hogy

miért.

A kettős indexezés túl bonyolult, ezért legyen csak ,  és .

Az oszlopokat pedig színekkel különböztessük meg.

Ez volna tehát az inverz mátrix. Már csak azt kell kiszámolni, hogy mennyi ,  és

Ehhez végezzük el a szorzást!

A dolog picit bonyolultnak tűnik, de csak első ránézésre.

Bármi legyen is az inverz mátrix, az elemeire teljesülnie kell ennek a három egyenletrendszernek.

Oldjuk őket meg! Ehhez elvileg három külön táblázatra van szükségünk.

Valójában elég egyetlen táblázat.

A három egyenletrendszert tehát egyszerre oldjuk meg, a szokásos bázistranszformációval.

A bázistranszformáció lépéseit most nem részletezzük, minden pontosan úgy megy, ahogyan eddig. Aki esetleg úgy érzi, hogy elhomályosultak az emlékei ezzel kapcsolatban, az nézze meg a bázistranszformációról szóló részt.

A kapott megoldás éppen az inverz.

Csak annyi dolgunk van, hogy

sorba rakjuk a sorokat:

Az inverz kiszámolása valójában tehát rettentő egyszerű. Itt van mondjuk ez a mátrix:

Mindössze annyit kell tennünk, hogy felírjuk a mátrixot, a szokásos táblázatba,

és mellé írjuk az egységmátrixot.

Ezek után jön a bázistranszformáció. Ha nem tudjuk mindegyik x-et levinni, akkor nincs inverz. Ha mindet le tudjuk vinni, akkor van.


Mátrix inverze négyzetes mátrixoknál (Gauss)

Az inverz nem négyzetes mátrixoknál (Bázistranszf.)

Elérkezett az idő, hogy olyan mátrixok inverzét is kiszámoljuk, amelyek nem -esek.

Ilyenkor a jobb oldali inverz és a bal oldali inverz nem egyezik meg.

 ilyenkor  jobb oldali inverz

 ilyenkor  bal oldali inverz

Itt van például egy mátrix

A bal oldali inverz 3x2-es lesz

A jobb oldali inverz szintén 3x2-es lesz

Mindkettőt bázistranszformációval számoljuk ki

Itt sajnos van egy kis gond.

bal oldali inverz

most nincs

jobb oldali inverz

most épp van

Maradt egy -s sor, amiben nem

mindenki nulla, tehát nincs megoldás.

Itt viszont  van  megoldás,

a fönt maradt  legyen mondjuk .


Az inverz nem négyzetes mátrixoknál (Gauss)

Mi az a determináns?

MÁTRIXOK DETERMINÁNSA, SAJÁTÉRTÉKE ÉS SAJÁTVEKTORA

DEFINÍCIÓ: Ha az  egy -es mátrix, akkor determinánsa

ahol p az oszlopindexek permutációi, I(p) pedig ezen permutációk inverziószáma.

Ez egy igazán remek definíció, de egy kis magyarázatot igényel.

Valójában a mátrixok determinánsa sokkal egyszerűbb fogalom.

Arról van szó, hogy a mátrix minden sorából és oszlopából kiválasztunk egy és csak egy elemet, és ezeket az elemeket összeszorozzuk. Ezt az összes lehetséges módon

megtesszük, és a szorzatokat ellátjuk egy előjellel, végül az így kapott előjeles

szorzatokat összeadjuk.

 EGY 2x2-ES MÁTRIX DETERMINÁNSA

Nézzünk erre egy példát. Itt van egy mátrix:

aminek a determinánsa

A determináns tehát azt tudja, hogy minden mátrixból csinál

egyetlen számot.

Hamarosan az is kiderül, hogy mindez mire jó, de most lássuk

mi a helyzet egy 3X3-as mátrix determinánsával!

EGY 3x3-AS MÁTRIX DETERMINÁNSA

A 3X3-as mátrixok determinánsának kiszámolására van egy szabály,

ami szarrusz szabály néven ismert.

A szabály lényege, hogy fogjuk a mátrixot

és leírjuk saját maga mögé még egyszer,

majd vesszük a főátlókat és a mellékátlókat.

A főátlók elemeit összeszorozzuk és pozitív előjellel vesszük,

aztán a mellékátlók elemeit is összeszorozzuk, de azokat negatív előjellel vesszük.

Ez a mátrix determinánsa.

A módszer sajnos csak 3x3-as mátrixokra működik és nem túl kellemes.

Sokkal több értelme van megjegyezni az úgynevezett kifejtési tételt,

ami minden nxn-es mátrixra jó és most jön.

Ha az  egy -es mátrix, akkor determinánsa

Itt  a  elemhez tartozó aldetermináns.

Semmi ok az aggodalomra, a gyakorlatban mindez sokkal egyszerűbb.

Nézzünk egy példát!

Van itt ez a 3x3-as mátrix:

Ennek a determinánsát fogjuk kiszámolni, és mondjuk az első sora

szerint fejtjük ki.

Kifejthetjük a második sor szerint is, majd megnézzük azt is,

a végeredmény ugyanaz kell, hogy legyen.

Az első sor elemeit váltakozó előjellel kell venni, ez a bizonyos  

de egyszerűbb, ha az úgynevezett sakktábla-szabályt jegyezzük meg.

Az aldeterminánst majd mindjárt megnézzük!

A sakktábla-szabály miatt a második elem mínusszal van.

A harmadik megint plusszal.

Most jönnek az aldeterminánsok, amik úgy keletkeznek,

hogy az adott elem sorát és oszlopát kihúzzuk.

Végül kiszámoljuk a 2X2-es mátrixok determinánsait.

És kész is.

Nézzük meg, hogy mi történik, ha a második sor szerint fejtünk ki!

Ha a második sor szerint fejtünk ki, akkor a sakktábla-szabályban is

a második sort kell nézni.

És kifejthetjük a harmadik sor szerint is,

de ami még ennél is izgalmasabb, hogy oszlop szerint is ki lehet fejteni.

Mondjuk nézzük meg a harmadik oszlop szerint!


A kifejtési tétel

A KIFEJTÉSI TÉTEL

A kifejtési tétel lényege az, hogy bármilyen nagy -es mátrix

determinánsának meglehetősen kellemetlen kiszámolását visszavezeti

-es mátrixok determinánsára, amit már könnyen ki tudunk számolni.

Maga a tétel első ránézésre kicsit barátságtalannak tűnik,

de mindjárt nézünk rá egy konkrét példát.

Nézzük a példát!

Van itt ez a 4x4-es mátrix:

 Ennek a determinánsát fogjuk kiszámolni, és mondjuk fejtsük ki

 a második sora szerint.

 Kifejthetnénk az első sor szerint is, majd megnézzük azt is,

 a végeredmény  így is úgy is ugyanaz lesz.

 A második sor elemeit váltakozó előjellel kell venni, ez a bizonyos  

 de egyszerűbb, ha az úgynevezett sakktábla-szabályt jegyezzük meg.

A sakktábla-szabály miatt a második sor első eleme mínusszal van.

Az aldeterminánst majd mindjárt megnézzük!

A sakktábla-szabály miatt a második sor első eleme mínusszal van.

A második elem plusszal van.

Aztán a harmadik elem ismét mínusszal, mellesleg ő eleve negatív.

A negyedik elem pedig megint plusszal.

Most jöhetnek az aldeterminánsok, amik úgy keletkeznek, hogy mindig

az adott elem sorát és oszlopát kihúzzuk.

És aztán mindegyik aldeterminánst egyenként kiszámoljuk. Ez eltart egy darabig.

Próbáljuk meg érdekesebbé tenni a dolgot azzal, hogy az első sor szerint fejtünk ki.

Megint jön a sakktábla.

Itt jön aztán a következő aldetermináns kiszámolása.

Ezt  kifejthetjük mondjuk a harmadik sor szerint,

de ami még ennél is izgalmasabb, hogy oszlop szerint is ki lehet fejteni.

Mondjuk nézzük meg a harmadik oszlop szerint!

És kifejthetjük a harmadik sor szerint is,

de ami még ennél is izgalmasabb, hogy oszlop szerint is ki lehet fejteni.

Mondjuk nézzük meg a harmadik oszlop szerint!

Térjünk rá a következő 3x3-as determinánsra.

Kifejthetjük bármelyik sor szerint, vagy bármelyik oszlop szerint,

de alkalmazhatunk egy kis varázslást is.

Ez bevált, úgyhogy az utolsó megmaradt determinánst is így intézzük el.

Ezzel kész az eredeti 4x4-es mátrix determinánsa!

Kiszámolhattuk volna úgy is, hogy nem a második sor szerint fejtjük ki, hanem mondjuk a negyedik oszlop szerint. Nézzük meg ezt is!

számolunk…

És tényleg így is  0  jön ki!

AZ  MÁTRIX DETERMINÁNSA NULLA, HA

VAN CSUPA NULLA SORA

VAN KÉT AZONOS SORA

EGYIK SORA MÁSIK SOR SZÁMSZOROSA

EGYIK SORA MÁS SOROK LINEÁRIS KOMBINÁCIÓJA

MINDEZ SOR HELYETT OSZLOPRA IS ELMONDHATÓ

HA A  MÁTRIX ÚGY KELETKEZIK AZ  MÁTRIXBÓL, HOGY

EGY SORÁNAK VAGY OSZLOPÁNAK MINDEN ELEMÉT -VAL SZOROZZUK,

MINDEN SORÁNAK MINDEN ELEMÉT -VAL SZOROZZUK,

KÉT SORÁT VAGY OSZLOPÁT FÖLCSERÉLJÜK

EGY SORÁHOZ VAGY OSZLOPÁHOZ MÁS SOROK VAGY OSZLOPOK LINEÁRIS   KOMBINÁCIÓJÁT ADJUK


A determinánsok tulajdonságai

Néhány nagyon izgalmas dolog fog kiderülni a mátrixok determinánsával kapcsolatban.

Vannak olyan speciális mátrixok, amiknek a determinánsát különösebb szenvedés nélkül ki tudjuk számolni. Ilyenek például az úgynevezett alsó vagy felső háromszögmátrixok.

Ezek determinánsa a főátló elemek szorzata.

Az egységmátrix is háromszögmátrix.

Vannak aztán a determinánsoknak különböző érdekes tulajdonságaik.

Nézzük ezeket meg, egy-egy példával.

Végül itt van egy fontos tétel, a determinánsok szorzási tétele, ami szerint

Ha a tételben a  mátrix helyére is az  mátrixot írjuk

    sőt   

Ha pedig az  mátrixnak létezik inverze, akkor a szorzási tétel alapján


Szinguláris és reguláris mátrixok

SZINGULÁRIS ÉS REGULÁRIS MÁTRIXOK

Az -es mátrixokat két nagy csoportba sorolhatjuk. Vannak azok a mátrixok melyeknek a determinánsa nulla és vannak azok, amiknek nem.

Ez a kis eltérés valójában hatalmas szakadékot  jelent a kétféle csoport között.

AZ  MÁTRIX REGULÁRIS

LÉTEZIK  INVERZ MÁTRIX

RANG=n

AZ  MÁTRIX OSZLOPVEKTORAIBÓL ÁLLÓ

VEKTORRENDSZER LINEÁRISAN FÜGGETLEN

AZ  EGYENLETRENDSZERNEK

CSAK EGY MEGOLDÁSA VAN

AZ  HOMOGÉN LINEÁRIS

EGYENLETRENDSZERNEK CSAK EGY

MEGOLDÁSA VAN (A TRIVIÁLIS MEGOLDÁS)

AZ  MÁTRIX SZINGULÁRIS

NEM LÉTEZIK  INVERZ MÁTRIX

RANG<n

AZ  MÁTRIX OSZLOPVEKTORAIBÓL ÁLLÓ

VEKTORRENDSZER LINEÁRISAN ÖSSZEFÜGGŐ

AZ  EGYENLETRENDSZERNEK

VAGY VÉGTELEN SOK MEGOLDÁSA VAN

VAGY NINCS MEGOLDÁSA

AZ  HOMOGÉN LINEÁRIS

EGYENLETRENDSZERNEK VÉGTELEN

SOK MEGOLDÁSA VAN

Itt van például egy mátrix.

Nézzük meg milyen  paraméter esetén létezik inverze, milyen  paraméterre lesz a determinánsa éppen 0, illetve milyen  paraméterre lesz az

egyenletrendszernek végtelen sok megoldása.

Az összes kérdésre egyszerre megkapjuk a választ, ha kiszámoljuk a mátrix determinánsát.

Akkor létezik inverz, ha a mátrix reguláris, vagyis a determinánsa nem nulla:

Akkor lesz a determináns éppen nulla, ha

És akkor lesz az  egyenletrendszernek végtelen sok megoldása, ha a mátrix szinguláris, vagyis a determinánsa nulla,


A Cramer szabály