Barion Pixel Mátrixok, vektorok, vektorterek | mateking
 

Mátrixok, vektorok, vektorterek

1.

Végezzük el az alábbi műveleteket.

a) \( 3 \cdot \begin{pmatrix} 5 & 7 & -2 \\ 2 & 2 & 1 \end{pmatrix} \)

b) \( \begin{pmatrix} 2 & 4 & 7 \\ 1 & 5 & 3 \end{pmatrix} + \begin{pmatrix} 3 & 4 \\ 1 & 5 \end{pmatrix} \)

c) \( \begin{pmatrix} 3 & 4 \\ 1 & 5 \end{pmatrix} \cdot \begin{pmatrix} 2 & 4 & 7 \\ 1 & 5 & 3 \end{pmatrix} \)

d) \( \begin{pmatrix} 2 & 4 & 7 \\ 1 & 5 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & 4 \\ 1 & 5 \end{pmatrix} \)

2.

Adjuk meg az alábbi mátrixok transzponált mátrixait!

a) \( A=\begin{pmatrix} 2 & 3 & 5 \\ 1 & 4 & 1 \\ 2 & 5 & 7 \end{pmatrix} \)

b) \( B=\begin{pmatrix} 5 & 7 & -2 \\ 2 & 2 & 1 \end{pmatrix} \)

c) \( C=\begin{pmatrix} 5 & 1 & 7 \\ 1 & 4 & 2 \\ 7 & 2 & 6 \end{pmatrix} \)

3.

Döntsük el, hogy az alábbi vektorok lineárisan függetelenek vagy összefüggőek.

\( \underline{v_1}=\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad \underline{v_2}=\begin{pmatrix} 0 \\ 3 \\ 0 \end{pmatrix} \quad \underline{v_3}=\begin{pmatrix} 0 \\ 0 \\ 4 \end{pmatrix} \)

4.

Töltsük ki az alábbi táblázatot.

vektorok száma megadható-e ennyi vektor úgy, hogy független legyen $R^3$-ban megadható-e ennyi vektor, hogy generátor-rendszer legyen $R^3$-ban
1
2
3
4
5
6.

Számítsuk ki az alábbi két vektor által bezárt szöget.

\( \underline{a}=\begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} \quad \underline{b}=\begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} \)

7.

Legyen $\underline{a}$, $\underline{b}$, $\underline{c} \in R^n$ vektorok. Az alábbi állítások közül melyik igaz?

a) Ha $\underline{a}, \underline{b}, \underline{c}$ lineárisan független, akkor $\underline{a}+\underline{b}+\underline{c}$, $\underline{b}+\underline{c}$, $\underline{c}$ is lineárisan független.

b) Ha $\underline{a}+\underline{b}+\underline{c}$, $\underline{b}+\underline{c}$, $\underline{c}$ generátor-rendszer, akkor $\underline{a}$, $\underline{b}$, $\underline{c}$ is az.

c) Ha $\underline{a}, \underline{b}, \underline{c}$ lineárisan független, akkor $\underline{a}-\underline{b}$, $\underline{b}-\underline{c}$, $\underline{c}-\underline{a}$ is lineárisan független.

d) Ha $\underline{a}, \underline{b}, \underline{c}$ lineárisan független, akkor $\underline{a}-\underline{b}$, $\underline{b}-\underline{c}$ is lineárisan független.

e) Ha $\underline{a}-\underline{b}$, $\underline{b}-\underline{c}$ lineárisan független, akkor $\underline{a}$, $\underline{b}$, $\underline{c}$ is lineárisan független.

f) Ha $\underline{a}-\underline{b}$, $\underline{b}-\underline{c}$ generátor-rendszer, akkor $\underline{a}$, $\underline{b}$, $\underline{c}$ is az.

8.

a) Bontsuk fel a $\underline{v}$ vektort az $\underline{a}, \underline{b}$ és $\underline{c}$ vektorokkal párhuzamos komponensekre.

\( \underline{v}= \begin{pmatrix} 4 \\ -4 \\ 2 \end{pmatrix} \quad \underline{a}=\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \)

\( \underline{b}=\begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix} \quad \underline{c}=\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \)

b) Egy síkban vannak-e az $\underline{a}, \underline{b}, \underline{c}$ vektorok?

\( \underline{a}= \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \quad \underline{b}=\begin{pmatrix} 0 \\ -3 \\ 2 \end{pmatrix} \quad \underline{c}=\begin{pmatrix} 2 \\ -1 \\ -4 \end{pmatrix} \)

9.

Van itt néhány vektor, és végezzük el velük a következő műveleteket.

\( A=\begin{pmatrix} 1 & 3 & 1 \\ 2 & 0 & 4 \\ 3 & 1 & 7 \end{pmatrix} \quad \underline{b}=\begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} \)

\( C=\begin{pmatrix} 2 & 1 & 7 \\ 3 & 1 & 8 \end{pmatrix} \quad \underline{d}=\begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} \)

\( E=< 2 \; 5 \; 7 > \)

a) \( A \cdot \underline{b} \)

b) \( A \cdot C \)

c) \( A \cdot C^* \)

d) \( \underline{b^*} \cdot \underline{d} \)

e) \( \underline{b} \cdot \underline{d^*} \)

f) \( A^2 \)

10.

a) Vizsgáljuk meg, hogy $W$ altere-e $R^3$-nak, ha igen, adjunk meg egy bázist $W$-ben.

\( W= \left\{ \begin{pmatrix} a \\ b \\ a+1 \end{pmatrix} \Bigg| \; a,b \in R \right\} \)

b) Vizsgáljuk meg, hogy $W$ altere-e $R^4$-nek, ha igen, adjunk meg egy bázist $W$-ben.

\( W= \left\{ \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \; \Bigg| \; \begin{matrix} a,b,c,d \in R \\ a=b \\ \text{és} \\ c=3d \end{matrix} \right\} \)

11.

a) Írjuk föl a $P(7,8,9)$ ponton átmenő és $\underline{v}=\begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix}$ irányvektorú egyenes egyenletét.

b) Írjuk föl a $P(3,5)$ ponton átmenő és a $4x+y=6$ egyenletű egyenesre merőleges egyenes síkbeli egyenletét.

c) Írjuk föl a $P(3,5,7)$ ponton átmenő és az $ \frac{x-1}{4}=\frac{y-2}{6}=\frac{z-1}{9}$ egyenletrendszerű egyenesre merőleges sík térbeli egyenletét.

d) Írjuk föl a $P(1,1)$ és $Q(3,5)$ ponton átmenő egyenes síkbeli egyenletét.

e) Írjuk föl a $P(1,4,1)$ a $Q(3,5,7)$ és az $R(6,5,2)$ pontokon átmenő sík térbeli egyenletét.

12.

Számítsuk ki az alábbi vektorok vektoriális szorzatát.

a) \( \underline{a}=\begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} \quad \underline{b}=\begin{pmatrix} 5 \\ 3 \\ 2 \end{pmatrix} \qquad \underline{a} \times\underline{b}=\; ? \)

b) Írjuk föl a $P(1,1)$ és $Q(3,5)$ ponton átmenő egyenes síkbeli egyenletét.

c) Írjuk föl a $P(1,4,1)$ a $Q(3,5,7)$ és az $R(6,5,2)$ pontokon átmenő sík térbeli egyenletét.

13.

Az alábbi bázist alakítsuk át ortogonális bázissá a Gram-Schmidt-ortogonalizáció segítségével.

\( \underline{b_1}=\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \quad \underline{b_2}=\begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \quad \underline{b_3}=\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \)

14.

Döntsük el, hogy az alábbi vektorok lineárisan függetelenek vagy összefüggőek.

\( \underline{v_1}=\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \quad \underline{v_2}=\begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} \quad \underline{v_3}=\begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix} \)

16.

a) Egy áruszállító cég hat különböző országba szállít 5-féle terméket. Az $A$ mátrix azt írja le, hogy az egyes országokba hány darabot szállítanak a különböző termékekből. A $B$ mátrix pedig a szállítási költséget adja meg termékenként és országonként EUR-ban.

\( A = \begin{pmatrix} 450 & 67 & 765 & 310 & 70 \\ 610 & 87 & 964 & 510 & 88 \\ 480 & 72 & 710 & 321 & 76 \\ 756 & 75 & 864 & 412 & 91 \\ 656 & 96 & 689 & 311 & 56 \\ 340 & 24 & 457 & 233 & 23 \end{pmatrix} \quad B =\begin{pmatrix} 2 & 5 & 3 & 1 & 1 \\ 3 & 7 & 2 & 2 & 2 \\ 5 & 8 & 4 & 3 & 3 \\ 2 & 3 & 4 & 2 & 1 \\ 2 & 4 & 3 & 1 & 1 \\ 3 & 4 & 2 & 1 & 2 \end{pmatrix} \)

Írjuk föl mátrixműveletek segítségével ezeket:

1) A Németországba (2. sor) szállított termékek száma összesen.

2) A 4-es termékből (4. oszlop) Svájcba (3. sor) szállított mennyiség.

3) A 2-es termék (2. oszlop) Olaszországba (5. sor) szállításának összköltsége.

4) A Németországba (2. sor) szállított összes termék teljes szállítási költsége.

5) Az összes elszállított termék.

17.

Van itt néhány mátrix és vektor és el kéne végezni velük pár műveletet.

\( \begin{pmatrix} -2 & 3 & 5 \\ 4 & 2 & 1 \\ 6 & -5 & 2 \end{pmatrix} \quad \underline{b}=\begin{pmatrix} 5 \\ 1 \\ 7 \end{pmatrix} \quad C = < 3 \; 2 \; 1 > \)

a) \( A+I) \cdot C = ? \)

b) \( (2 \underline{b} + \underline{e}_1) \cdot \underline{b}^T = ? \)

c) \( (C^2-I)\cdot A = ? \)

18.

Van itt néhány mátrix és vektor és el kéne végezni velük pár műveletet.

\( A = \begin{pmatrix} 2 & 3 & 5 \\ 4 & 1 & 1 \\ 2 & 2 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 3 & -1 & 2 \\ -4 & 1 & 1 \\ 2 & 3 & 5 \end{pmatrix} \)

\( A + I = X + 2B \quad X = ?\)

19.

Van itt néhány mátrix és vektor és el kéne végezni velük pár műveletet.

\( A = \begin{pmatrix} 1 & 3 & -2 \\ 2 & -4 & 1 \\ 3 & 1 & 5 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 2 & 1 \\ 4 & 1 & 1 \\ 3 & -2 & 4 \end{pmatrix} \)

\( A^2+2X = (B+I)A+X \quad X = ?\)

20.

Van itt néhány mátrix és vektor és el kéne végezni velük pár műveletet.

\( A = \begin{pmatrix} 3 & 2 \\ 4 & 7 \\ -2 & 0 \end{pmatrix} \quad B = \begin{pmatrix} -5 & 7 & -2 \\ 0 & 4 & 5 \\ 2 & 2 & 1 \end{pmatrix} \quad \underline{c} = \begin{pmatrix} -3 \\ 3 \\ 1 \end{pmatrix} \quad \underline{d}=\begin{pmatrix} 6 \\ 5 \\ 2 \end{pmatrix} \)

a) \( A\cdot B = ?\)

b) \( B\cdot A = ?\)

c) \( A\cdot \underline{c} = ?\)

d) \( A^T\cdot \underline{c} = ?\)

e) \( \underline{c}\cdot \underline{d}^T = ?\)