Függvények ábrázolása
1. Ábrázoljuk az alábbi függvényeket.
a) \( f(x)=(x-3)^2 \)
b) \( f(x)=(-x-2)^2 \)
c) \( f(x)=(x-4)^2-3 \)
d) \( f(x)=\sqrt{x-3}+2 \)
e) \( f(x)=-\sqrt{x} \)
f) \( f(x)=\sqrt{-x} \)
Megnézem, hogyan kell megoldani
3. Ábrázoljuk az alábbi függvényeket.
a) \( f(x)=x^2-6x+7 \)
b) \( f(x)=x^2+5x+6 \)
c) \( f(x)=3x^2-12x+9 \)
d) \( f(x)=-2x^2+2x-12 \)
Megnézem, hogyan kell megoldani
5. Ábrázoljuk az alábbi függvényeket.
a) \( f(x)=\sqrt{x-5} \)
b) \( f(x)=\sqrt{6-2x} \)
c) \( f(x)=-\sqrt{3x+6} \)
d) \( f(x)=\sqrt{2x-4}+3 \)
e) \( f(x)=\sqrt{4x-12}+1 \)
f) \( f(x)=\sqrt{4-2x}-3 \)
Megnézem, hogyan kell megoldani
6. Ábrázoljuk az alábbi függvényeket.
a) \( f(x)=|x-5| \)
b) \( f(x)=|7-x| \)
c) \( f(x)=|6-2x| \)
d) \( f(x)=|x+5|-3 \)
e) \( f(x)=|3x-12|+1 \)
f) \( f(x)=2-|4-2x| \)
Megnézem, hogyan kell megoldani
7. Ábrázoljuk az alábbi függvényeket.
a) \( f(x)=|x^2-4| \)
b) \( f(x)=|x^2-5x| \)
c) \( f(x)=||x|-3| \)
Megnézem, hogyan kell megoldani
8. Ábrázoljuk az alábbi függvényeket.
a) \( f(x)=\frac{1}{x-3} \)
b) \( f(x)=\frac{x+3}{x-2} \)
c) \( f(x)=\frac{2x+5}{x+3} \)
Megnézem, hogyan kell megoldani
9. Ábrázoljuk az alábbi függvényeket.
a) \( f(x)=3^{x-5} \)
b) \( f(x)=3^{x-2}+3 \)
c) \( f(x)=-2^{x-3}+4 \)
Megnézem, hogyan kell megoldani
10. Ábrázoljuk az alábbi függvényeket.
a) \( f(x)=e^{x-5} \)
b) \( f(x)=e^{x-2}+3 \)
c) \( f(x)=-e^{x-3}+4 \)
d) \( f(x)=e^{3-x}+3 \)
Megnézem, hogyan kell megoldani
11. Ábrázoljuk az alábbi függvényeket.
a) \( f(x)=\ln{(x-5)} \)
b) \( f(x)=\ln{(x-2)}+3 \)
c) \( f(x)=-\ln{(x-3)}+4 \)
d) \( f(x)=\ln{(2-x)}+3 \)
Megnézem, hogyan kell megoldani
12. Ábrázoljuk az alábbi függvényeket.
a) \( f(x)=(x-2)^2 \)
b) \( f(x)=(-x+3)^2 \)
c) \( f(x)=(2x+6)^2 \)
Megnézem, hogyan kell megoldani
13. Ábrázoljuk az alábbi függvényeket.
a) \( f(x)=\sqrt{x+4} \)
b) \( f(x)=\sqrt{5-x} \)
Megnézem, hogyan kell megoldani
14. Ábrázoljuk az alábbi függvényeket.
a) \( f(x)=|x|-3 \)
b) \( f(x)=|x-3| \)
c) \( f(x)=|x-3|-5 \)
d) \( f(x)=-|x+1|+2 \)
Megnézem, hogyan kell megoldani
15. Ábrázoljuk az $f(x)=|x-3|-5 $ függvényt.
Megnézem, hogyan kell megoldani
16. Ábrázoljuk az $f(x)=-|x+1|+2 $ függvényt.
Megnézem, hogyan kell megoldani
17. Ábrázoljuk az $f(x)=-(x-2)^2+1 $ függvényt.
Megnézem, hogyan kell megoldani
18. Ábrázoljuk az $f(x)=(x-2)^2+5 $ függvényt.
Megnézem, hogyan kell megoldani
19. Ábrázoljuk az $f(x)=-|x+2|+3 $ függvényt.
Megnézem, hogyan kell megoldani
20. Ábrázoljuk az $f(x)=x^2-6x+13 $ függvényt.
Megnézem, hogyan kell megoldani
21. Ábrázoljuk az $f(x)=|x+2|-3 $ függvényt.
Megnézem, hogyan kell megoldani
22. Ábrázoljuk az $f(x)=x^2+2x+4 $ függvényt.
Megnézem, hogyan kell megoldani
23. Ábrázoljuk az $f(x)=x^2-10x+20 $ függvényt.
Megnézem, hogyan kell megoldani
24. Ábrázoljuk az $f(x)=\frac{1}{x-3} $ függvényt.
Megnézem, hogyan kell megoldani
25. Ábrázoljuk az $f(x)=\frac{1}{x+2}+5 $ függvényt.
Itt röviden és szuper-érthetően meséljük el neked, hogy, hogyan kell függvényeket ábrázolni. Függvények, koordináták, Értelmezési tartomány, Értékkészlet, Transzformációk, Külső és belső függvény transzformációk, x tengelyre tükrözés, y tengelyre tükrözés, néhány fontosabb függvény, mindez a középiskolás matek ismétlése. Szó lesz aztán a függvények monotonitásáról, konvexitásáról, lokális és abszolút szélsőértékekről, a függvények értelmezési tartományáról és értékkészletéről. Megnézzük a másodfokú függvények ábrázolását. A másodfokú függvények grafikonja egy parabola. A parabola csúcspontja eredetileg az origoban van, de ha eltoljuk a függvény grafikonját a függvénytranszformációkkal, akkor a csúcspont is arrébb tolódik. Nézzük meg, hogy hova, és azt is, hogy miért. Aztán jönnek a polinomfüggvények. Megtudhatod, hogyan néz ki az x a köbön függvény, az x a negyediken függvény és általában a hatványfüggvények. Megnézzük mi a közös a páros kitevős hatványfüggvényekben és a páratlan kitevős hatványfüggvényekben. Aztán megnézzük a páros és páratlan kitevős polinomfüggvényeket. Végül jön néhány polinomfüggvényes feladat a polinomfüggvények ábrázolásával és zérushelyeivel kapcsolatban. Ezek után jön a négyzetgyök függvény és különböző transzformációi. Aztán megnézzük az abszolútérték függvényt. Majd következik az 1/x függvény, amelynek grafikonja a hiperbola.
Ha az x különböző hatványait összeadjuk, akkor polinomokat kapunk.
Ez itt például az x5.
És, ha kivonjuk belőle azt, hogy x3…
akkor egy ilyen kanyargós polinomfüggvényt kapunk.
Íme, itt a polinomfüggvények általános alakja.
A polinomfüggvények viselkedése
A legmagasabb fokú tag együtthatóját hívjuk főegyütthatónak.
És a legmagasabb fokú tag határozza meg a polinomfüggvény viselkedését.
Ha a legmagasabb fokú tag kitevője páros és a főegyüttható pozitív, akkor így néz ki a polinomfüggvény.
Vagy így.
Ha a főegyüttható negatív, akkor ilyen.
A páratlan fokú polinomfüggvények egészen máshogy néznek ki.
Ha a főegyüttható pozitív, akkor innen lentről mennek fölfelé…
Ha negatív, akkor pedig fentről mennek lefelé.
Egy páros fokú polinomfüggvény megteheti, hogy sohasem metszi az x tengelyt.
De egy páratlan fokúnak legalább egyszer biztosan metszenie kell.
Ezért van az, hogy egy páratlan fokú polinomfüggvénynek mindig van zérushelye.
Most pedig néhány művészi rajzot fogunk készíteni.
Kezdjük egy olyan harmadfokú polinomfüggvénnyel, aminek pontosan két zérushelye van.
Egy harmadfokú polinomfüggvénynek legalább egy zérushelye biztosan van.
És maximum három tud lenni.
De egy kis trükk segítségével azért megoldható a kettő is.
Művészi pályafutásunk következő darabja egy olyan negyedfokú polinomfüggvény, aminek három zérushelye van.
Egy negyedfokú polinomfüggvénynek lehet nulla zérushelye…
aztán lehet egy is.
És kettő is.
Sőt lehet négy is.
De négynél több már nem.
Egy n-edfokú polinomfüggvénynek mindig legfeljebb n darab zérushelye tud lenni.
Ha a fokszám páratlan, akkor 1-től n-ig bármennyi lehet.
Ha a fokszám páros, akkor pedig 0-tól n-ig bármennyi.
Most éppen azt szeretnénk, hogy három zérushely legyen.
És íme, itt is van.
Próbáljuk meg kideríteni, hogy a három grafikon közül melyik tartozik ehhez a polinomfüggvényhez.
Az első grafikon ez a típus.
Egy páratlan fokú polinomfüggvény.
A mi kis függvényünk viszont negyedfokú.
A másik kettő már jobbnak tűnik.
Az ilyen extra kanyarokhoz viszont…
itt még lennie kéne valaminek.
Vagy x3-nek,
vagy x2-nek,
vagy mindkettőnek.
De egyik sincs.
Így hát a nyertes a középső.
Nézzünk meg még egyet.
Döntsük el, hogy a három grafikon közül melyik tartozik ehhez a polinomfüggvényhez.
Az első grafikon egy páros fokú polinomfüggvényé.
Úgyhogy pápá első grafikon.
A másik kettő páratlan fokú.
Ha lenne itt még egy x…
akkor lehetne itt egy extra kanyar.
De nincs.
Van itt ez a két halmaz…
Hogyha az egyik halmaz elemeihez hozzárendeljük a másik halmaz elemeit…
Akkor kiderül, hogy milyen idő lesz a héten.
Az is megeshet, hogy több nap is ugyanolyan lesz az idő…
Ezzel nincsen semmi baj.
De ha szombathoz például két különböző elemet is rendelünk…
Na, akkor most esernyőt vigyünk vagy fürdőruhát?
Hát igen, ez így nem túl egyértelmű…
Egy hozzárendelést egyértelműnek nevezünk, ha minden elemhez pontosan egy másik elemet rendel hozzá.
Teljesen mindegy, hogy melyiket…
egyedül az a fontos, hogy csak egyet.
Ez a hozzárendelés most egyértelmű.
Az egyértelmű hozzárendeléseket úgy hívjuk, hogy függvény.
Az ilyen egyértelmű hozzárendeléseknek az a neve, hogy függvény.
Adott az és nem üres halmaz.
Ha az A halmaz bizonyos elemeihez egyértelműen hozzárendeljük a B halmaz bizonyos elemeit, akkor ezt a hozzárendelést függvénynek nevezzük.
Simán előfordulhat, hogy az A halmaznak csak néhány eleméhez rendeljük hozzá…
a B halmaznak néhány elemét.
És az sem okoz problémát, ha több elemhez is ugyanazt rendeljük.
Egyedül az lenne baj, ha egy elemhez rendelnénk hozzá több elemet.
ÉRTELMEZÉSI TARTOMÁNY
ÉRTÉKKÉSZLET
Az értelmezési tartomány azoknak az elemeknek a halmaza az A halmazban… amikhez a függvény hozzárendel B halmazbeli elemeket.
Az értékkészlet pedig azoknak az elemeknek a halmaza a B halmazban…
amelyek hozzá vannak rendelve valamely A halmazbeli elemekhez.
Az értelmezési tartományt a domain szó alapján, ami egyébként azt jelenti, hogy tartomány így jelöljük:
De a gyengébb idegzetűek kedvéért szokás úgy is jelölni, hogy É.T.
Az értékkészlet jele pedig a range szó alapján, ami azt jelenti, hogy kiterjedés:
Ennek is van egy akadálymentesített jelölése, ami így szól, hogy É.K.
Egy hozzárendelést kölcsönösen egyértelműnek nevezünk, hogyha nem csak az egyik irányba egyértelmű…
hanem a másik irányba is.
Esetünkben ez most nem mondható el.
Az eső ugyanis pénteken és szombaton is esik.
Így aztán a visszafelé irányban az esőhöz a pénteket és a szombatot is hozzárendeljük.
Talán, ha pénteken sütne egy kicsit a nap…
az minden problémát megoldana.
Ez most egy kölcsönösen egyértelmű hozzárendelés.
És most lássuk, mire is használhatnánk ezeket a függvényeket, jóra vagy rosszra…
Az függvény kölcsönösen egyértelmű, ha akkor .
Vagyis különbözö x-ekhez mindig különböző y-okat rendel.
A kölcsönösen egyértelmű függvények az injektív függvények.
Itt jön aztán egy másik izgalmas tulajdonság is.
Egy függvény szürjektív, hogyha az egész B halmaz előáll képként, vagyis B minden eleme hozzá van rendelva valamelyik A-beli elemhez.
Hát ez most éppen nem mondható el, a napsütés ugyanis kimarad…
Hogyha mondjuk csütörtökön sütne egy kicsit a nap…
Na, az segítene a dolgon.
Ez a függvény így már szürjektív.
És így is szürjektív.
Hogyha ráadásul még injektív is lenne…
Ehhez egy kicsit változatosabb időjárásra lesz szükség…
Akkor ez egy injektív és szürjektív függvény, amit úgy hívunk, hogy bijektív.